Relog
 All-or-nothing Relay

POWER

eaw
Table of Content Page
RELOG - a system with contact components used in control engineering 3
Survey of the 'All-or-nothing relays' device program included in the RELOG system 3
Construction of all-or-nothing relays 4
Contact types 4
Contact materials 4
Suppressor circuits 5
Switching capacity 5-7
Range of working voltage and ambient temperature of all-or-nothing relays 8
Manufacturing quality 9
Useful life 9
Conformity with standards 9
CE conformity 9
Technical parameters 10-16
Accessories 17-18
Circuit diagrams 18-22
Dimensioned drawings 22-24
List of order numbers (Pl nos.) 25-32
List of extended order numbers 33
Accessories 33

RELOG - a Contact Component System for Control Engineering

Classical all-or-nothing relays have not lost their importance in electrical engineering. In future, they will continue to be a significant, universally applicable component. Type and arrangements fully meeting the requirements with high reliability can be chosen from a wide range of varieties.
RELOG is the name of a system of modernly designed electromechanical relays. They are fulfilling the high requirements to contemporary industrial controls.
The RELOG contact component system comprises different relays in the control engineering field, often offered as single function in different dimensions, to constitute a useful coordinated system being in line with uniform electrical and constructive aspects.
The all-or-nothing relays pertaining to the RELOG system are particularly suitable to be applied in small automation systems and to realize different control tasks, i.e., machine controls of any kind, elevator controls, control in energy-generating and distributing plants and in many other fields of control and plant construction.
Here, these relays can be used in many fields of control in the fields of input, connection, signal or output circuits covering small and medium switching capacities, where matter are focusing on a high contact reliability and a long-term stability under unfavorable ambient conditions.
RELOG all-or-nothing relays have been developed for different specific applications. They meet the required operating conditions with high a reliability. These are, for example:

- DC all-or-nothing relays with an extended voltage range acc. to UIC and a high working temperature range allow the use in plants subject to high voltage and temperature variations, as for instance, in electrical devices on railway vehicles.
- all-or-nothing relay arrangement for DC (remanence relay) with two stable switching states independent on the operating voltage is suitable for either pulse operation as well as for continuous operation. Memory functions can be fulfilled due to the magnetic latching. The advantageous application of the all-or-nothing relay is its use in any units where the switching state must be maintained despite voltage failures. The control by pulses allows an essential power reduction, so that it is advantageous for battery-operated units.
- An all-or-nothing relay arrangement for AC or DC current control allows the application in units, where the current is monitored, or where processes should be controlled by current. They are particularly suitable as monitoring relay for lamps / position lights. In this case, their winding is in series with the lamps.
- All-or-nothing relay arrangements for AC or DC with visual indication function to indicate the switching state can be equipped with a target in working current arrangement (signalizes relay in operated condition) and/or closed-circuit arrangement (signalizes relay in initial state) or they can be equipped with a resettable drop indicator.
The all-or-nothing relays of the RELOG system are supplied in enclosures with clamp-type terminals. By using plug-in connection for quick fastening of bars and/or screw fixing over the fastening sheet, screw-type terminals are possible while maintaining the intermateability. However, it is also possible to accomplish the connection through plug-in connections for solder or wrap terminations and/or adapters with a screw-type terminal for screw fixings used for massive walls or switchboards.

Survey of the Device Program for All-or-Nothing Relays of the RELOG - System

Construction of the All-or-Nothing Relay

The driving and the switching element of the relay are arranged on a lead frame made of molding material.
The driving element is designed as clapper-type armature, for DC made of electrical relay iron, for AC made of a special alloy, in a massive form and with high surface protective coating.
The relay contacts and coil terminals are designed as plug-in blades.
Driving and switching system are provided with a transparent PC cover that allows to monitor the contact elements.
The all-or-nothing relays may also be equipped with a free-wheeling diode type GP02 40 (4 kV reverse voltage) arranged between the terminal connections 1.7 (cathode) and 3.7 (anode).
Driving and switching systems in all-or nothing relays with extended voltage range acc. to UIC and relays to monitor current or position lamps are covered by a metal cover conductively connected with two leading earthing plug-in blades A transparent insert in the cover allows to monitor the contact elements.
All-or-nothing relays can be equipped with a target in working current arrangement (signalizes that the relay is in the operated condition) and/or closed-circuit arrangement (signalizes that the relay is in the initial state) or they can be equipped with a resettable drop indicator (except degree of protection IP 50).
For the double components 4 RH all-or-nothing relays, two relay systems are combined, electrically and mechanically, in such a way to jointly switch all in all 8 changeover contacts. These relays are covered by a metal cover conductively connected with two leading earthing plug-in blades. A transparent insert in the cover allows to monitor the contact elements.

Contact Types

A variety of different factors influence the reliability of the contact making process of all-or-nothing relays. Due to the correct choice of the contact material, the relay enclosure, and the contact design any switching problem can be solved in the field of relay engineering.
For RELOG all-or-nothing relays we differentiate between single or twin contacts. In twin contacts, each contact spring is equipped with two smaller contacts, where the changeover spring is bifurcated for purposes of a uniform power distribution. Due to their higher contact material quantity single contacts have a higher switching capacity compared to twin contacts. However, in case of dusty atmospheres, twin contacts have a 20 - to 100 -fold higher contact making reliability.

Contact Materials

The following contact materials are used in RELOG all-or-nothing relays:

- Hard silver AgCu	
Features:	high hardness in contrast to fine silver high electrical and thermal conductivity tends to form oxide and sulfide layers at sulphurous atmospheres contact resistances $\approx 30 \mathrm{~m} \Omega$
Application:	General application at medium AC and DC loads in power and light-current engineering single contacts $24 \mathrm{~V} \ldots .250 \mathrm{~V} / 10 \mathrm{~mA} \ldots 10 \mathrm{~A}$, twin contacts $12 \mathrm{~V} \ldots 250 \mathrm{~V} / 5 \mathrm{~mA} \ldots 5 \mathrm{~A}$
Scope of application:	
- Silver palladium AgPd30	
Features:	high arc-resistance high corrosion resistance highly resistant against (hydrogen sulphide) relatively constant contact resistances $\approx 40 \mathrm{~m} \Omega$
use in unfavorable ambient conditions (sulphurous atmosphere)	

Other contact materials such as $\mathrm{AgNi0}, 15, \mathrm{AgNi10}, \mathrm{AgSnO}_{2}$ can also be supplied upon request and in an appropriate number.

Suppressor Circuits

Suppressor circuits are used to protect from cut-off voltage peaks caused by switching of inductivities and the reduction of contact load.
It prevents, among other things, the malfunction and/or destruction of electronical and insulation parts caused by overvoltage, radio disturbance as well as it reduces material migration and contact erosion.
The suppressor circuit should be placed directly at the trouble spot.
Normal suppressor circuits are:

- Diode suppressor circuits

Advantages:	- no overvoltage (only approx. 0.7 V)
Disadvantages:	- low costs
	- only for DC
	- not protected against polarity reversal

- Varistor suppressor circuits

Advantages: - for DC and AC

- only low dropout times at the relay
- low costs
- protected against polarity reversal

Disadvantages: - relatively high remaining overvoltage

- RC suppressor circuits

Switching Capacity

Alternating Current - Switching Capacity, Electrical Endurance

The electrical endurance is mainly determined by contact erosion caused by the arc during the make and break of contacts when switching the load. Bouncing of contacts increases the erosion.
Since - due to the high generation of heat at the contacts when switching the load, the contact material vaporizes and/or splashes away, the erosion resistance of the contact material has a great influence on the electrical endurance.
Contact endurance - depending on the switching capacity for different contact materials and relay types - may be taken from the following diagrams, switching rate $\leq 3,600$ cycles/h
at a resistive load of $(\cos \varphi=1)$
at a reactive load of $(\cos \varphi=0.4)$
The contact endurance given in the diagrams refers to a completely asynchronous switching of the all-or-nothing relays.
For switching currents between 4 A and 10 A , the type-depending parameter to the maximum permissible continuous current and/or limiting continuous current have to be observed.

2 RH 01, 2 RH 30, 2 RH 60, 4 RH10, 4 RH 40 contact material: AgCu

2 RH 02, 2 RH 62, 4 RH12
contact material: AgCu

The increased contact erosion when reactive load is applied where the stored energy in the reactive load cycle causes a longer burning of the arcs when opening the contacts results into a reduced contact endurance compared to resistive load.
The correction factor of the electrical endurance C depending on the power factor $\cos \varphi=0,3 \ldots 1$ can be seen in the following diagram.

Direct Current - Switching Capacity, Electrical Endurance

When direct current is applied - in contrast to alternating current, where the arc goes out in current zero, there might be the problem of formation of a standing arc at resistive and reactive load in combination with high voltage. The arc is mainly influenced by contact load, contact distance, contact speed and contact material.
The maximum breaking current dependent on the switching voltage and on the number of series-connected contact elements is shown in the following diagram.
The given values refer to a contact endurance of $-\geq 1 \times 10^{4}$ operating cycles at an operating frequency of $\leq 3,600$ cycles per hour and shall be regarded as limits of load capability.

Direct current - limiting breaking capacity:
Characteristic from 1 to 4: reactive load $\tau=0 \mathrm{~ms}$
$1 \Rightarrow 1$ contact
$2 \Rightarrow 2$ contacts in series
$3 \Rightarrow 3$ contacts in series
Characteristic from 5 to 8: resistive load $\tau=40 \mathrm{~ms}$
$5 \Rightarrow 1$ contact
$6 \Rightarrow 2$ contacts in series
$7 \Rightarrow 3$ contacts in series
$8 \Rightarrow$ c Contacts in series

Data on the electrical endurance at resistive or reactive DC load can only be obtained from switching tests with original load. Switching of DC loads results into material transfer at the contacts, from the anode to the cathode, depending on the load. To reduce this material transfer from contact to contact and to extinguish the arc in a better way, measures extinguishing the arc should be taken (see also paragraph "Suppressor Circuits).
The electrical endurance for some values depending on the series-connected contacts, operating frequency $\leq 3,600$ cycles per hour, without arc-extinguishing measures, can be taken from the following table.

Contact load	Contact material	Contact start	1 contact	2 contacts in series	3 contacts in series	4 contacts in series
$220 \mathrm{~V}-0.40 \mathrm{~A} \tau=0 \mathrm{~ms}$	AgCu	single contacts	$8,0 \times 10^{6}$			
$220 \mathrm{~V}-0.50 \mathrm{~A} \tau=0 \mathrm{~ms}$	AgCu	single contacts	$3,0 \times 10^{6}$			
$220 \mathrm{~V}-0.60 \mathrm{~A} \tau=0 \mathrm{~ms}$	AgCu	single contacts		$1,5 \times 10^{6}$		
$220 \mathrm{~V}-0.75 \mathrm{~A} \tau=0 \mathrm{~ms}$	AgCu	single contacts		$0,5 \times 10^{6}$		
$220 \mathrm{~V}-1.00 \mathrm{~A} \tau=0 \mathrm{~ms}$	AgCu	single contacts			$0,7 \times 10^{6}$	
$220 \mathrm{~V}-1.50 \mathrm{~A} \tau=0 \mathrm{~ms}$	AgCu	single contacts			$0,2 \times 10^{6}$	
$220 \mathrm{~V}-2.00 \mathrm{~A} \tau=0 \mathrm{~ms}$	AgCu	single contacts				$1,0 \times 10^{6}$
$220 \mathrm{~V}-3.00 \mathrm{~A} \tau=0 \mathrm{~ms}$	AgCu	single contacts				$0,5 \times 10^{6}$
$220 \mathrm{~V}-0.15 \mathrm{~A} \tau=40 \mathrm{~ms}$	AgCu	single contacts	$1,0 \times 10^{6}$			
$220 \mathrm{~V}-0.25 \mathrm{~A} \tau=40 \mathrm{~ms}$	AgCu	single contacts	$0,5 \times 10^{6}$			
$220 \mathrm{~V}-0.45 \mathrm{~A} \tau=40 \mathrm{~ms}$	AgCu	single contacts		$0,5 \times 10^{6}$		
$220 \mathrm{~V}-0.50 \mathrm{~A} \tau=40 \mathrm{~ms}$	AgCu	single contacts			$0,3 \times 10^{6}$	
$220 \mathrm{~V}-0.40 \mathrm{~A} \tau=0 \mathrm{~ms}$	AgNi0,15Au6	twin contacts	$8,0 \times 10^{6}$			
$220 \mathrm{~V}-0.10 \mathrm{~A} \tau=40 \mathrm{~ms}$	AgNi0,15Au6	twin contacts	$1,0 \times 10^{6}$			
$220 \mathrm{~V}-0.40 \mathrm{~A} \tau=0 \mathrm{~ms}$	AgPd30	twin contacts	$8,0 \times 10^{6}$			
$220 \mathrm{~V}-0.05 \mathrm{~A} \tau=40 \mathrm{~ms}$	AgPd30	twin contacts	$2,0 \times 10^{6}$			

Working Voltage Range and Ambient Temperature Range of All-or-Nothing Relays

All-or-nothing relays with an extended voltage range acc. to UIC and such relays with a metal cover can be applied principally outside the nominal range of use.
In the following operating voltage diagrams, the permissible ratio of the working voltage to the rated voltage dependent on the ambient temperature is shown under different operating conditions.
The maximum permissible working voltage for the all-or-nothing relays reduces with an increasing temperature.

Working voltage range for the following all-or-nothing relays: 2 RH 01. 2 RH 02 voltage ranae acc. to UIC

Working voltage range for the following all-or-nothing relays:
2 RH 01 normal voltage range (metal cover)

$1 \Rightarrow$ Max. permissible operating voltage at single installation without contact load
$2 \Rightarrow$ Max. permissible operating voltage at single installation, contact limiting current 4 A over 4 make contacts
$3 \Rightarrow$ Max. permissible operating voltage at block installation and without contact load
$4 \Rightarrow$ Max. permissible operating voltage at block installation, continuous contact limiting current 4 A over 4 make contacts
$5 \Rightarrow$ Min. Response voltage at leading operation with maximum permissible operating voltage, single installation and/or block installation Continuous contact limiting current 4 A over 4 make contacts and thermal balance state of the end temperature of coil

Working voltage range for the following all-or-nothing relays: 4 RH 10, 4 RH 12 voltage range acc. to UIC

Working voltage range for the following all-or-nothing relays: 4 RH 10, 4 RH 12 normal voltage range

$1 \Rightarrow$ Max. permissible operating voltage at single installation without contact load
$2 \Rightarrow$ Max. permissible operating voltage at single installation, contact limiting current 3.6 A over 8 make contacts
$3 \Rightarrow$ Max. permissible operating voltage at block installation and without contact load
$4 \Rightarrow$ Max. permissible operating voltage at block installation, continuous contact limiting current 3.6 A over 8 make contacts
$5 \Rightarrow$ Min. response voltage at leading operation with maximum permissible operating voltage, single installation and/or block installation Continuous contact limiting current 3.6 A over 8 make contacts and thermal balance state of the end temperature of coil

The products of the RELOG system are manufactured in line with a quality management system according to the requirements of the DIN EN ISO 9004 standard as well as they are documented in line with DIN EN ISO 9001.

Useful Life

Expectance value ≥ 20 years, provided the electrical and/or mechanical endurance are not exceeded before.

Conformity with Standards

The data given for the RELOG all-or-nothing relays, including accessories, refer to the following national and international standards:

DIN VDE 0435-110 / VDE Part 110: 1989-04
Electrical relays; terms
DIN EN 60810-1 / VDE 0435 Part 201: 1999-04
Electromechanical non-specified-time relays,
Part 1: General Requirements
DIN EN 60810-5 / VDE 0435 Part 140: 1999-04
Electromechanical non-specified-time relays,
Part 5: Insulation coordination
DIN EN 60255-23 / VDE 0435 Part 120: 1997-03
Part 23: Electrical relays; contact behavior
DIN EN 60529 / VDE 0470 Part 1: 2000-12
Degrees of protection provided by enclosure (IP code)
DIN EN 60999-1 / VDE 0609 Part 1: 2000-12
Connecting devices - electrical copper conductors - safety requirements for screw-type terminals and screwless terminals

DIN EN 60068-2-1:1995-03
Environment tests - Part 2: Tests, test A: cold
DIN EN 60068-2-2:1994-08
Environment tests- part 2 tests, test B : dry heat
IEC 60068-2-3: 1969-01
Environment tests - Part 2: tests, test Ca: Continuous damp heat
DIN EN 60068-2-30:2000-02
Environment tests- part 2 tests, test Db40: Cyclical damp heat
DIN EN 60068-2-11:2000-02; environment tests - Part 2 Tests; test Ka: Salt fog.
IEC 60068-2-42: 1982-01 / IEC 60068-2-43: 1976-01
Environment tests - part 2 tests; (corrosive atmosphere) test $\mathrm{Ki}(\mathrm{Kc}+\mathrm{Kd})$: sulphur dioxide + hydrogen sulphide
DIN EN 60068-2-29:1995-03
Environment tests- part 2 tests, test Eb: shock test
DIN EN 60068-2-6:1996-05
Environment tests- part 2 tests, test Fc: vibrations, sinusoidal

CE Conformity

Presently, no CE labeling for "Electromechanical non-specified-time relays" is required in the guidelines.
However, the all-or-nothing relays of the RELOG system mounted on plug-in connections for quick-rail fastenings and/or screw-type fastenings with a screw terminal are in line with the regulations of the European guidelines 73/23/EEC "Low-voltage guideline" as of 19.02.1973 89/392/EEC of 03.05.89
including their modifications.
The CE marking will be attached to the package or on the side print of the relay.

Technical Parameters

Monostable 2 RH 01, 4 RH 10 all-or-nothing relays for direct voltage

Parameters \quad Relay type	2 RH 01	2 RH 01	2 RH 01	4 RH 10
rated voltages U_{N}	6 V to 220 V DC			12 V to 220 V DC
Response voltage	$\leq 0.8 \times \mathrm{U}_{\mathrm{N}}$			
max. working voltage	$1.1 \times \mathrm{U}_{\mathrm{N}}$			
operating mode	continuous operation			
Dropout voltage	$\geq 5 \%$ of U_{N}			
Ambient temperature	$-40^{\circ} \mathrm{C}$ up to $+55^{\circ} \mathrm{C}$ at individual installation $-40^{\circ} \mathrm{C}$ up to $+50^{\circ} \mathrm{C}$ at block installation			
Rated consumption:	$\leq 2.5 \mathrm{~W}$			$\leq 5.0 \mathrm{~W}$
Function indicator	without function indicator or with target / drop indicator			without
GP02-40 free-wheeling diode	with or without			without
max. switching voltage	$\leq 250 \mathrm{~V} \mathrm{AC/DC}$			
Number of contacts	4 changeover contacts			8 changeover contacts
Contact arrangement	single contacts			
Material of contact-tip	AgCu	AgPd30	AgCu	
Contact circuit resistance (24 V -, 100 mA , new condition)	approx. $30 \mathrm{~m} \Omega$	approx. $40 \mathrm{~m} \Omega$	approx. $30 \mathrm{~m} \Omega$	
Maximum making capacity	10 A DC/AC		3 A DC/AC	10 A DC/AC
Maximum permitted continuous current	5 A the sum of the square of the single currents must not exceed $64 \mathrm{~A}^{2}$		3 A the sum of the square of the single currents must not exceed $9 A^{2}$	5 A the sum of the square of the single currents must not exceed $104 \mathrm{~A}^{2}$
Limiting continuous current	$4 \mathrm{~A}$ over four making contact circuits		1.5 A over four making contact circuits	3.6 Aover eight making contact circuits
Operating frequency	$\leq 3,600$ switching cycles per hour			
Mechanical endurance without function indication with target, drop indicator	$\geq 10 \times 10^{6}$ switching cycles $\geq 0,1 \times 10^{6}$ switching cycles			$\geq 10 \times 10^{6}$ switching cycles
Rated breaking capacity $\cdot \cos \varphi=1.0230 \mathrm{~V}$ AC - $\cos \varphi=0.4230 \mathrm{~V} \mathrm{AC}$ - $\tau=0 \mathrm{~ms} 220 \mathrm{~V}$ DC - $\tau=40 \mathrm{~ms} 220 \mathrm{~V}$ DC	$\begin{aligned} & 1.5 \mathrm{~A} \\ & 1.0 \mathrm{~A} \\ & 0.4 \mathrm{~A} \\ & 0.15 \mathrm{~A} \\ & \hline \end{aligned}$	$\begin{aligned} & 1.5 \mathrm{~A} \\ & 1.0 \mathrm{~A} \\ & 0.4 \mathrm{~A} \\ & 0.05 \mathrm{~A} \\ & \hline \end{aligned}$	$\begin{aligned} & 1.5 \mathrm{~A} \\ & 1.0 \mathrm{~A} \\ & 0.4 \mathrm{~A} \\ & 0.15 \mathrm{~A} \\ & \hline \end{aligned}$	
Minimum switching capacity	$24 \mathrm{~V}-, 10 \mathrm{~mA}, \tau=0 \mathrm{~ms}$	$24 \mathrm{~V}-, 50 \mathrm{~mA}, \tau=0 \mathrm{~ms}$	24 V -, $10 \mathrm{~mA}, \tau=0 \mathrm{~ms}$	
Voltage endurance - at rated breaking capacity - at inherent load - at minimum switching capacity	$\begin{aligned} & \geq 2,0 \times 10^{6} \\ & \geq 5,0 \times 10^{6} \\ & \geq 10 \times 10^{6} \end{aligned}$	$\begin{aligned} & \geq 10 \times 10^{6} \\ & \geq 10 \times 10^{6} \\ & \geq 10 \times 10^{6} \end{aligned}$	$\begin{aligned} & \geq 2,0 \times 10^{6} \\ & \geq 2,5 \times 10^{6} \\ & \geq 10 \times 10^{6} \end{aligned}$	
response time of make contacts - without function indication - with target, drop indicator	$\begin{aligned} & \leq 25 \mathrm{~ms} \\ & \leq 35 \mathrm{~ms} \end{aligned}$			$\begin{gathered} \leq 25 \mathrm{~ms} \\ -\quad \\ \hline \end{gathered}$
closing time of a break contact - with free-wheeling diode	$\begin{aligned} & \leq 15 \mathrm{~ms} \\ & \leq 80 \mathrm{~ms} \end{aligned}$			$\begin{aligned} & \leq 20 \mathrm{~ms} \\ & \leq 80 \mathrm{~ms} \end{aligned}$
rated alternating insulation voltage	2 kV			
degree of pollution	3 acc. to DIN VDE 0110-1			
Impulse voltage withstand level	4.0 kV , voltage form $1.2 / 50 \mu \mathrm{~s}$			
Clearances in air	$\geq 3 \mathrm{~mm}$			
Creep age distances	$\geq 4 \mathrm{~mm}$			
Site altitude	$\leq 2,000 \mathrm{~m}$ above sea level			
Relay enclosure	bifurcated plastic co	(PC), transparent	closed plastic cover (PC), transparent	Closed metal cover (AI) transparent display window
Insulation resistance	$\geq 1 \times 10^{8} \Omega$ in new condition, $\mathrm{U}_{\mathrm{P}}=500 \mathrm{~V}$			
Degree of protection	IP40 enclosure IP00 connecting plug-in blades IP20 connecting terminals with plug-in connection for quick-rail fixings			
Climatic type of construction	normal or climatic type of construction for ships			
Environment tests	values on request			
Weight	about 0.22 kg			about 0.44 kg

Monostable 2 RH 02, 4 RH 12 all-or-nothing relays for direct voltage

Relay type Parameters	2 RH 02	2 RH 02	2 RH 02	2 RH 02	4 RH 12
rated voltages U_{N}	6 V to 220 V DC				12 V to 220 V DC
Response voltage	$\leq 0,8 \times \mathrm{U}_{\mathrm{N}}$				
max. working voltage	$1,1 \times \mathrm{U}_{\mathrm{N}}$				
operating mode	continuous operation				
Dropout voltage	$\geq 5 \%$ of U_{N}				
Ambient temperature - at single installation - at block installation	$\begin{aligned} & -40^{\circ} \mathrm{C} \text { up to }+50^{\circ} \mathrm{C} \\ & -40^{\circ} \mathrm{C} \text { up to }+45^{\circ} \mathrm{C} \\ & \hline \end{aligned}$				$\begin{aligned} & -40^{\circ} \mathrm{C} \text { up to }+55^{\circ} \mathrm{C} \\ & -40^{\circ} \mathrm{C} \text { up to }+50^{\circ} \mathrm{C} \\ & \hline \end{aligned}$
Rated consumption:	$\leq 2.5 \mathrm{~W}$				$\leq 5.0 \mathrm{~W}$
Function indicator	with or without target and/or drop indicator	with or without target	with or without target and/or drop indicator		without
GP02-40 free-wheeling diode	with or without				Without
max. switching voltage	$\leq 250 \mathrm{~V} \mathrm{AC/DC}$				
Number of contacts	4 changeover contacts				8 changeover contacts
Contact arrangement	single contacts				
Material of contact-tip	AgCu		AgNi0,15Au6	AgPd30	AgCu
Contact circuit resistance 24 V -, 100 mA , new condition	$30 \mathrm{~m} \Omega$		$20 \mathrm{~m} \Omega$	$40 \mathrm{~m} \Omega$	$30 \mathrm{~m} \Omega$
Maximum making capacity	10 A DC/AC				
Maximum permitted continuous current	3 A the sum of the squares of the single currents must not exceed $64 \mathrm{~A}^{2}$ in single installation, and $23 A^{2}$ in block installation				5 A the sum of the square of the single currents must not exceed 104 A 2
Limiting continuous current	4 A at single installation 2.4 A at block installation (over four making contact circuits)				3.6 A (over eight making contact circuits)
Switching frequency	$\leq 3,600$ cycles / hour	$\begin{gathered} \leq 1200 \text { cycles } / \\ \text { hour } \end{gathered}$	$\leq 3,600$ switching cycles per hour		
Mechanical endurance - without function indication - with sign, drop indicator	$\geq 20 \times 10^{5}$ switching cycles $\geq 0,1 \times 10^{6}$ switching cycles				$\geq 10 \times 10^{6}$ cycles
Rated breaking capacity - $\cos \varphi=1.0230$ V AC - $\cos \varphi=0.4230 \mathrm{~V} \mathrm{AC}$ - $\tau=0 \mathrm{~ms} 220 \mathrm{~V}$ DC - $\tau=40 \mathrm{~ms} 220 \mathrm{~V}$ DC	$\begin{aligned} & 1.5 \mathrm{~A} \\ & 1.0 \mathrm{~A} \\ & 0.4 \mathrm{~A} \\ & 0.1 \mathrm{~A} \end{aligned}$			$\begin{aligned} & 1.5 \mathrm{~A} \\ & 1.0 \mathrm{~A} \\ & 0.4 \mathrm{~A} \\ & 0.05 \mathrm{~A} \end{aligned}$	$\begin{aligned} & 1.5 \mathrm{~A} \\ & 1.0 \mathrm{~A} \\ & 0.4 \mathrm{~A} \\ & 0.1 \mathrm{~A} \end{aligned}$
Minimum switching capacity	$\begin{gathered} 24 \mathrm{~V}-, 5 \mathrm{~mA}, \\ \tau=0 \mathrm{~ms} \end{gathered}$		$\begin{gathered} 24 \mathrm{~V}-, 1 \mathrm{~mA}, \\ \tau=0 \mathrm{~ms} \end{gathered}$	$\begin{gathered} 24 \mathrm{~V}-, 25 \mathrm{~mA}, \\ \tau=0 \mathrm{~ms} \end{gathered}$	$\begin{gathered} 24 \mathrm{~V}-, 5 \mathrm{~mA}, \\ \tau=0 \mathrm{~ms} \end{gathered}$
Voltage endurance - at rated breaking capacity - at inherent load - at minimum switching capacity	$\begin{aligned} & \geq 2,0 \times 10^{6}(\mathrm{AC}) \\ & \geq 1,0 \times 10^{6}(\mathrm{DC}) \\ & \geq 2,5 \times 10^{6} \\ & \geq 10 \times 10^{6} \end{aligned}$		$\begin{aligned} & \geq 3,0 \times 10^{6}(\mathrm{AC}) \\ & \geq 1,0 \times 10^{6}(\mathrm{DC}) \\ & \geq 5,0 \times 10^{6} \\ & \geq 10 \times 10^{6} \end{aligned}$	$\begin{aligned} & \geq 5,0 \times 10^{6}(\mathrm{AC}) \\ & \geq 2,0 \times 10^{6}(\mathrm{DC}) \\ & \geq 10 \times 10^{6} \\ & \geq 10 \times 10^{6} \end{aligned}$	$\begin{aligned} & \geq 2,0 \times 10^{6}(\mathrm{AC}) \\ & \geq 1,0 \times 10^{6}(\mathrm{DC}) \\ & \geq 2,5 \times 10^{6} \\ & \geq 10 \times 10^{6} \end{aligned}$
response time of make contacts - without function indication - with sign, drop indicator	$\begin{aligned} & \leq 25 \mathrm{~ms} \\ & \leq 35 \mathrm{~ms} \\ & \hline \end{aligned}$				$\begin{gathered} \leq 25 \mathrm{~ms} \\ - \\ \hline \end{gathered}$
closing time of a break contact - without free-wheeling diode - with freewheeling diode	$\begin{aligned} & \leq 25 \mathrm{~ms} \\ & \leq 80 \mathrm{~ms} \\ & \hline \end{aligned}$				
Rated alternating insulation voltage	2 kV				
degree of pollution	3 acc. to DIN VDE 0110-1				
Impulse voltage withstand level	4.0 kV , voltage form $1.2 / 50 \mu \mathrm{~s}$				
Clearances in air	$\geq 3 \mathrm{~mm}$				
Creep age distances	$\geq 4 \mathrm{~mm}$				
Site altitude	$\leq 2,000 \mathrm{~m}$ above sea level				
Relay enclosure	closed plastic covers (PC), transparent				Closed metal cover (AI) display window transparent
Insulation resistance	$\geq 1 \times 10^{8} \Omega$ in new condition, $U_{P}=500 \mathrm{~V}$				
Degree of protection - enclosure - Connecting plug-in blades -terminal with plug-in connection for quick-rail fixing	$\begin{aligned} & \text { IP } 40 \\ & \text { IP } 00 \\ & \text { IP } 20 \end{aligned}$	$\begin{aligned} & \text { IP } 50 \\ & \text { IP } 00 \\ & \text { IP } 20 \end{aligned}$	$\begin{aligned} & \text { IP } 40 \\ & \text { IP } 00 \\ & \text { IP } 20 \end{aligned}$		
Climatic type of construction	normal or climatic type of construction for ships				climatic type of construction
Environment tests	values on request				
Weight	about 0.22 kg				about 0.44 kg

Monostable 2 RH 01, 2 RH 01, 2 RH 02, 4 RH 12 all-or-nothing relays with a voltage range acc. to UIC

Relay type Parameters	2 RH 01	2 RH 02	2 RH 02	2 RH 02	4 RH 10	4 RH 12
rated voltages U_{N}	6 V to 220 V DC				12 V to 220 V DC	
Response voltage	$\leq 0,675 \times U_{N}$ see paragraph "All-or-nothing relays with extended voltage and temperature range"					
max. working voltage	see paragraph "All-or-nothing relays with extended voltage and temperature range"					
operating mode	continuous operation					
Dropout voltage	$\geq 5 \%$ of U_{N}					
Ambient temperature	$-40^{\circ} \mathrm{C}$ up to $+55^{\circ} \mathrm{C}$ at individual installation $-40^{\circ} \mathrm{C}$ up to $+50^{\circ} \mathrm{C}$ at block installation see paragraph "All-or-nothing relays with extended voltage and temperature range"					
Rated consumption:	$2.0 \mathrm{~W} \pm 15$ \%				$4.0 \mathrm{~W} \pm 15$ \%	
Function indicator	without function indicator or with sign / drop indicator				without	
max. switching voltage	$\leq 250 \mathrm{~V} \mathrm{AC/DC}$					
Number of contacts	4 changeover contacts				8 changeover contacts	
Contact arrangement	single contacts	twin contacts			single contacts twin contacts	
Material of contact-tip	AgCu		AgNi0,15Au6	AgPd30	AgCu	
Contact circuit resistance (24 V-, 100 mA , new condition)	approx. $30 \mathrm{~m} \Omega$		approx. $20 \mathrm{~m} \Omega$	approx. $40 \mathrm{~m} \Omega$	approx. $30 \mathrm{~m} \Omega$	
Maximum making capacity	10 A DC/AC					
Maximum permitted continuous current	$5 \mathrm{~A}$ the sum of the square of the single currents must not exceed $64 \mathrm{~A}^{2}$				5 A the sum of the square of the single currents must not exceed $104 \mathrm{~A}^{2}$	
Limiting continuous current	$4 \mathrm{~A}$ over four making contact circuits				3.6 Aover eight making contact circuits	
Switching frequency						
Mechanical endurance - without function indication - with sign, drop indicator	$\leq 3,600$ switching cycles per hour $\geq 10 \times 10^{6}$ cycles $\geq 20 \times 106$ switching cycles $\geq 0,1 \times 10^{6}$ cycles $\geq 0,1 \times 106$ switching cycles				$\geq 10 \times 106$ switching cycles	
Rated breaking capacity - $\cos \varphi=1.0230 \mathrm{~V}$ AC - $\cos \varphi=0.4230 \mathrm{~V}$ AC - $\tau=0 \mathrm{~ms} 220 \mathrm{~V}$ DC - $\tau=40 \mathrm{~ms} 220 \mathrm{~V}$ DC - $\tau=20 \mathrm{~ms} 220 \mathrm{~V}$ DC	$\begin{aligned} & 1.0 \mathrm{~A} \\ & 1.0 \mathrm{~A} \\ & 0.4 \mathrm{~A} \\ & 0.15 \mathrm{~A} \end{aligned}$	$\begin{aligned} & 1.5 \mathrm{~A} \\ & 1.0 \mathrm{~A} \\ & 0.4 \mathrm{~A} \\ & 0.1 \mathrm{~A} \\ & 0.04 \mathrm{~A} \end{aligned}$	$\begin{aligned} & 1.5 \mathrm{~A} \\ & 1.0 \mathrm{~A} \\ & 0.4 \mathrm{~A} \\ & 0.1 \mathrm{~A} \end{aligned}$	$\begin{aligned} & 1.5 \mathrm{~A} \\ & 1.0 \mathrm{~A} \\ & 0.4 \mathrm{~A} \\ & 0.05 \mathrm{~A} \\ & 0.04 \mathrm{~A} \end{aligned}$	$\begin{aligned} & 1.5 \mathrm{~A} \\ & 1.0 \mathrm{~A} \\ & 0.4 \mathrm{~A} \\ & 0.15 \mathrm{~A} \end{aligned}$	$\begin{aligned} & 1.5 \mathrm{~A} \\ & 1.0 \mathrm{~A} \\ & 0.4 \mathrm{~A} \\ & 0.1 \mathrm{~A} \\ & 0.04 \mathrm{~A} \end{aligned}$
Minimum switching capacity	$\begin{gathered} 24 \mathrm{~V}-, 10 \mathrm{~mA}, \\ \tau=0 \mathrm{~ms} \end{gathered}$	$\begin{gathered} 12 \mathrm{~V}-, 5 \mathrm{~mA} \\ \tau=0 \mathrm{~ms} \end{gathered}$	$\begin{gathered} 12 \mathrm{~V}-, 1 \mathrm{~mA}, \\ \tau=0 \mathrm{~ms} \end{gathered}$	$\begin{gathered} 12 \mathrm{~V}-, 25 \mathrm{~mA}, \\ \tau=0 \mathrm{~ms} \end{gathered}$	$\begin{gathered} 24 \mathrm{~V}-, 10 \mathrm{~mA}, \\ \tau=0 \mathrm{~ms} \end{gathered}$	$\begin{gathered} 12 \mathrm{~V}-, 5 \mathrm{~mA}, \\ \tau=0 \mathrm{~ms} \\ \hline \end{gathered}$
Voltage endurance - at rated breaking capacity - at inherent load - at minimum switching capacity	$\begin{aligned} & \geq 2,0 \times 10^{6}(\mathrm{AC}) \\ & \geq 1,0 \times 10^{6}(\mathrm{DC}) \\ & \geq 5,0 \times 10^{6} \\ & \geq 10 \times 10^{6} \end{aligned}$	$\begin{aligned} & \geq 2,0 \times 10^{6}(\mathrm{AC}) \\ & \geq 1,0 \times 10^{6}(\mathrm{DC}) \\ & \geq 5,0 \times 10^{6} \\ & \geq 10 \times 10^{6} \end{aligned}$	$\begin{aligned} & \geq 3,0 \times 10^{6}(\mathrm{AC}) \\ & \geq 1,0 \times 10^{6}(\mathrm{DC}) \\ & \geq 5,0 \times 10^{6} \\ & \geq 10 \times 10^{6} \end{aligned}$	$\begin{aligned} & \geq 10 \times 10^{6}(\mathrm{AC}) \\ & \geq 2,0 \times 10^{6}(\mathrm{DC}) \\ & \geq 10 \times 10^{6} \\ & \geq 20 \times 10^{6} \end{aligned}$	$\begin{aligned} & \geq 2,0 \times 10^{6}(\mathrm{AC}) \\ & \geq 1,0 \times 10^{6}(\mathrm{DC}) \\ & \geq 2,5 \times 10^{6} \\ & \geq 10 \times 10^{6} \end{aligned}$	$\begin{aligned} & \geq 2,0 \times 10^{6}(\mathrm{AC}) \\ & \geq 1,0 \times 10^{6}(\mathrm{DC}) \\ & \geq 2,5 \times 10^{6} \\ & \geq 10 \times 10^{6} \end{aligned}$
- response time of make contacts - without function indication - with sign, drop indicator	$\begin{aligned} & \leq 25 \mathrm{~ms} \\ & \leq 35 \mathrm{~ms} \end{aligned}$				$\leq 25 \mathrm{~ms}$	
closing time of a break contact - with freewheeling diode	$\begin{aligned} & \leq 25 \mathrm{~ms} \\ & \leq 80 \mathrm{~ms} \end{aligned}$					
Rated alternating insulation voltage	2 kV					
degree of pollution	3 acc. to DIN VDE 0110-1					
Impulse voltage withstand level	4.0 kV , voltage form 1.2/50 $\mu \mathrm{s}$					
Clearances in air	$\geq 3 \mathrm{~mm}$					
Creep age distances	$\geq 4 \mathrm{~mm}$					
Site altitude	$\leq 2,000 \mathrm{~m}$ above sea level					
Relay enclosure	closed metal cover (AI), transparent display window					
Insulation resistance	$\geq 1 \times 10^{8} \Omega$ in new condition, $U_{P}=500 \mathrm{~V}$					
Degree of protection	IP40 - enclosure IP00 - connecting plug-in blades IP20 - connecting terminals with plug-in connection for quick-rail fixings					
Climatic type of construction	normal or climatic type of construction		climatic type of construction		normal or climatic type of construction for ships	climatic type of construction
Environment tests	values on request					
Weight	about 0.22 kg				about 0.44 kg	

[^0]
Monostable All-or-Nothing Relays 2 RH 01, 2 RH 30 to monitor current and navigation lamps

Specific Parameter for 2 RH 01 (DC) All-or-Nothing Relays
Use as current monitoring relays:

Rated current I_{N}	$[A]$	0,015	0,17	0,24	0,35	0,46	0,50	0,90	1,50	2,45	4,15
Minimum response current	$[\mathrm{A}]$	0,012	0,14	0,20	0,27	0,35	0,42	0,72	1,17	1,97	2,59
Maximum permitted continuous current	$[\mathrm{A}]$	0,020	0,24	0,35	0,48	0,61	0,75	1,25	2,11	3,61	4,69
Coil resistance	$[\Omega]$	4107	29,3	14,1	7,3	4,55	3,04	1,08	0,38	0,13	0,077
Rated consumption:	$[\mathrm{W}]$	0,92	0,85	0,81	0,89	0,96	0,76	0,87	0,86	0,78	1,33

Use as monitoring relays for lamps and navigation lamps:

Rated current	$[\mathrm{A}]$	0,17	0,24	0,35	0,46	0,46	0,50	0,50	0,50	0,50	0,50	0,50	0,90
Voltage of lamp	$[\mathrm{V}]$	220	220	220	110	220	24	110	110	220	220	220	24
Capacity of lamp	$[\mathrm{W}]$	34	40	60	40	75	10	60	75	100	3×40	2×60	20
$\mathrm{U}_{\text {Loss }}{ }^{*}$ through relay	$[\mathrm{V}]$	4,44	2,53	1,97	1,63	1,54	1,20	1,63	2,03	1,37	1,65	1,65	0,87

Specific Parameter for 2 RH 30 (AC 50 Hz) All-or-Nothing Relays
Use as monitoring relays for lamps and navigation lamps:

Rated current	[A]	0,34	0,4	0,53	0,6	0,7	0,7	0,95	0,95	0,95	0,95	0,95	0,95	1,33	1,8	1,8	1,8
Maximum permitted continuous current	[A]	0,5	0,75	0,9	1,0	1,0	1,4	1,4	1,4	1,4	1,4	1,4	1,4	1,95	2,5	2,5	2,5
Voltage of lamp	[V]	230	230	230	230	127	230	24	127	127	127	230	230	127	24	127	127
Capacity of lamp	[W]	34	40	60	$\begin{array}{\|c} 2 \times 40 \\ 80 \end{array}$	40	75	10	60	75	2×40	100	$\begin{gathered} \hline 2 \times 60 \\ 3 \times 40 \\ 120 \end{gathered}$	2×40	20	100	$\begin{array}{c\|} \hline 2 \times 60 \\ 3 \times 40 \\ 120 \\ \hline \end{array}$
Current at U_{N}	[mA]	147	173	260	347	314	326	410	471	589	628	434	521	629	827	786	944
$\mathrm{U}_{\text {Loss* }}{ }^{\text {t through relay }}$	[V]	6,85	5,84	5,34	5,20	3,51	3,64	2,58	2,96	3,70	3,94	2,73	3,27	1,95	1,54	1,46	1,75

General Parameter for 2 RH 01 und 2 RH 30 All-or-Nothing Relays

Parameter	Type: 2 RH 01	Type: 2 RH 30
Rated frequency F_{N}	-	50 Hz
Tolerance of rated frequency	-	± 6 \%
operating mode	continuous operation	
Release current	$\geq 5 \%$ of I_{N}	$\geq 15 \%$ of I_{N}
Ambient temperature	$-30^{\circ} \mathrm{C}$ up to $+55^{\circ} \mathrm{C}$ at individual installation $-30^{\circ} \mathrm{C}$ up to $+50^{\circ} \mathrm{C}$ at block installation	
Function indicator	optionally without function indicator or with target / drop indicator	
Maximum switching voltage:	$\leq 250 \mathrm{~V} \mathrm{AC/DC}$	
Number of contacts	4 changeover contacts	
Contact arrangement	single contacts	
Material of contact-tip	hard silver AgCu	
Contact circuit resistance	approx. $30 \mathrm{~m} \Omega$ in new condition (24 V DC, 100 mA ,)	
Maximum making capacity	10 A DC/AC	
Maximum permitted continuous current	the sum of the square of the single currents must not exceed $64 \mathrm{~A}^{2}$	
Limiting continuous current	4 A over all 4 making contact circuits	
Switching frequency	$\leq 3,600$ switching cycles as current monitoring relay $\leq 1,800$ cycles as lamp monitoring relay break between two cycles must be $\geq 1 \mathrm{~s}$	≤ 600 switching cycles per hour break between two cycles must be $\geq 5 \mathrm{~s}$
Mechanical endurance	$\geq 10 \times 10^{6}$ cycles without function indication $\geq 0,1 \times 10^{6}$ cycles with target and/or drop indicator	
Rated breaking capacity	$\begin{aligned} & 1.5 \mathrm{~A} \cos \varphi=1.0230 \mathrm{~V} \mathrm{AC} \\ & 1.0 \mathrm{~A} \cos \varphi=0.4230 \mathrm{~V} \mathrm{AC} \\ & 0.4 \mathrm{~A} \tau=0 \mathrm{~ms} 220 \mathrm{~V} \mathrm{DC} \\ & 0.15 \mathrm{~A} \tau=40 \mathrm{~ms} 220 \mathrm{~V} \mathrm{DC} \end{aligned}$	
Minimum switching capacity	24 V DC, $10 \mathrm{~mA}, \tau=0 \mathrm{~ms}$	
Voltage endurance	$\geq 1,0 \times 10^{6}$ cycles at rated breaking capacity	
response time of make contacts	$\leq 30 \mathrm{~ms}$ at I_{N} without function indication $\leq 40 \mathrm{~ms}$ at I_{N} with target and/or drop indicator	
closing time of a break contact	$\leq 20 \mathrm{~ms}$	
Rated alternating insulation voltage	2 kV	
degree of pollution	3 acc. to DIN VDE 0110-1	
Impulse voltage withstand level	4.0 kV , voltage form $1.2 / 50 \mu \mathrm{~s}$	
Clearances in air	$\geq 3 \mathrm{~mm}$	
Creep age distances	$\geq 4 \mathrm{~mm}$	
Site altitude	$\leq 2,000 \mathrm{~m}$ above sea level	
Relay enclosure	closed metal cover (AI), transparent display window	
Insulation resistance	$\geq 1 \times 10^{8} \Omega$ in new condition, $\mathrm{U}_{\mathrm{P}}=500 \mathrm{~V}$	
Degree of protection	$\begin{aligned} & \text { IP40 - enclosure } \\ & \text { IP00 - connecting plug-in blades } \\ & \text { IP20 - connecting terminals with plug-in connection for quick-rail fixings } \end{aligned}$	
Climatic type of construction	normal or climatic type of construction for ships	
Environment tests	values on request	
Weight	about 0.22 kg	

Monostable 2 RH 30, 2 RH 32 All-or-Nothing Relays for Alternating Voltage

Relay type Parameters	2 RH 30	2 RH 30	2 RH 30	2 RH 30	2 RH 32	2 RH 32
Rated voltages U_{N}	6 V up to 230 V AC					
Rated frequency F_{N}	50 Hz	60 Hz	50 Hz			
Tolerance of rated frequency	± 6 \%	± 6 \%	± 6 \%			
Response voltage	$\leq 0,8 \times \mathrm{U}_{\mathrm{N}}$					
max. working voltage	$1,1 \times U_{N}$					
operating mode	continuous operation					
Dropout voltage	$\geq 15 \%$ of U_{N}					
Ambient temperature	$-40^{\circ} \mathrm{C}$ up to $+55^{\circ} \mathrm{C}$ at individual installation $-40^{\circ} \mathrm{C}$ up to $+50^{\circ} \mathrm{C}$ at block installation					
Rated consumption: - initial state - Operated condition	$\begin{gathered} 7.0 \mathrm{VA}, \\ \cos \varphi=032 \\ 3.6 \mathrm{VA}, \\ \cos \varphi=062 \end{gathered}$	$\begin{gathered} 7.5 \mathrm{VA}, \\ \cos \varphi=03 \\ 4.5 \mathrm{VA}, \\ \cos \varphi=06 \end{gathered}$	$3.5 \mathrm{VA} \cos \varphi=062$			
Function indicator	with or without target and/or drop indicator					with or without target
max. switching voltage	$\leq 250 \mathrm{~V} \mathrm{AC/DC}$					
Number of contacts	4 changeover contacts					
Contact arrangement	single contacts				twin contacts	
Material of contact-tip	AgCu					
Contact circuit resistance	approx. $30 \mathrm{~m} \Omega$ (24 V DC, 100 mA , new condition)					
Maximum making capacity	10 A DC/AC			3 A DC/AC	10 A DC/AC	
Maximum permitted continuous current	5 A the squares of the single currents must not exceed the sum $64 \mathrm{~A}^{2}$			3 A the squares of the single currents must not exceed the sum of 9 A	5 A, the squares of the single currents must non exceed in single installation $64 \mathrm{~A}^{2}$, in block installation $9 \mathrm{~A}^{2}$	
Limiting continuous current (over four making contact circuits	4 A			1.5 A	4.0 A at single installation 1.5 A at block installation	
Switching frequency	$\leq 3,600$ switching cycles per hour					$\begin{gathered} \leq 1,200 \text { cycles } \\ \text { per hour } \end{gathered}$
Mechanical endurance	$\geq 10 \times 10^{6}$ cycles without function indication $\geq 0,1 \times 10^{6}$ cycles without function indication					
Rated breaking capacity - $\cos \varphi=1.0230$ V AC - $\cos \varphi=0.4230 \mathrm{~V}$ AC - $\tau=0 \mathrm{~ms} 220 \mathrm{~V}$ DC - $\tau=40 \mathrm{~ms} 220 \mathrm{~V}$ DC	$\begin{aligned} & 1.5 \mathrm{~A} \\ & 1.0 \mathrm{~A} \\ & 0.4 \mathrm{~A} \\ & 0.15 \mathrm{~A} \end{aligned}$				$\begin{aligned} & 1.5 \mathrm{~A} \\ & 1.0 \mathrm{~A} \\ & 0.4 \mathrm{~A} \\ & 0.1 \mathrm{~A} \end{aligned}$	
Minimum switching capacity	24 V -, $10 \mathrm{~mA}, \tau=0 \mathrm{~ms}$				$12 \mathrm{~V}-, 5 \mathrm{~mA}, \tau=0 \mathrm{~ms}$	
Voltage endurance - at rated breaking capacity - at inherent load - at minimum switching capacity	$\begin{aligned} & \geq 2,0 \times 10^{6}(\mathrm{AC}) \\ & \geq 1,0 \times 10^{6}(\mathrm{DC}) \\ & \geq 5,0 \times 10^{6} \\ & \geq 10 \times 10^{6} \end{aligned}$				$\begin{aligned} & \geq 1,0 \times 10^{6}(\mathrm{AC}) \\ & \geq 1,0 \times 10^{6}(\mathrm{DC}) \\ & \geq 2,5 \times 10^{6} \\ & \geq 10 \times 10^{6} \end{aligned}$	
response time of make contacts - without function indication - with sign, drop indicator	$\begin{aligned} & \leq 20 \mathrm{~ms} \\ & \leq 30 \mathrm{~ms} \end{aligned}$					
closing time of a break contact	$\leq 20 \mathrm{~ms}$					
Rated alternating insulation voltage	2 kV					
degree of pollution	3 acc. to DIN VDE 0110-1					
Impulse voltage withstand level	4.0 kV , voltage form $1.2 / 50 \mu \mathrm{~s}$					
Clearances in air	$\geq 3 \mathrm{~mm}$					
Creep age distances	$\geq 4 \mathrm{~mm}$					
Site altitude	$\leq 2,000 \mathrm{~m}$ above sea level					
Relay enclosure	bifurcated PC cover, transparent	closedmetal cover (AI)transparent display window		closed plastic covers (PC), transparent		
Insulation resistance	$\geq 1 \times 10^{8} \Omega$ in new condition, $U_{P}=500 \mathrm{~V}$					
Degree of protection - casing - Connecting plug-in blades - terminal with plug-in connection for quick-rail fixings	$\begin{aligned} & \text { IP } 40 \\ & \text { IP } 00 \\ & \text { IP } 20 \end{aligned}$					$\begin{aligned} & \text { IP } 50 \\ & \text { IP } 00 \\ & \text { IP } 20 \end{aligned}$
Climatic type of construction	normal or climatic type of construction for ships					climatic type of construction
Environment tests	values on request					
Weight	about 0.22 kg					

Monostable 4 RH 40, 4 RH 42 All-or-Nothing Relays for Alternating Voltage

Relay type Parameters	4 RH 40	4 RH 40	4 RH 42
rated voltages U_{N}	12 V up to 230 V AC		
Rated frequency F_{N}	50 Hz	60 Hz	50 Hz
Tolerance of rated frequency	± 6 \%	± 6 \%	± 6 \%
Response voltage	$\leq 0,8 \times \mathrm{U}_{\mathrm{N}}$		
max. working voltage	$1,1 \times \mathrm{U}_{\mathrm{N}}$		
operating mode	continuous operation		
Dropout voltage	$\geq 15 \%$ of U_{N}		
Ambient temperature - at single installation - at block installation	$\begin{aligned} & -40^{\circ} \mathrm{C} \text { up to }+55^{\circ} \mathrm{C} \\ & -40^{\circ} \mathrm{C} \text { up to }+50^{\circ} \mathrm{C} \\ & \hline \end{aligned}$	$\begin{aligned} & -40^{\circ} \mathrm{C} \text { up to }+50^{\circ} \mathrm{C} \\ & -40^{\circ} \mathrm{C} \text { up to }+45^{\circ} \mathrm{C} \\ & \hline \end{aligned}$	$\begin{aligned} & -40^{\circ} \mathrm{C} \text { up to }+55^{\circ} \mathrm{C} \\ & -40^{\circ} \mathrm{C} \text { up to }+50^{\circ} \mathrm{C} \\ & \hline \end{aligned}$
Rated consumption: - initial state - Operated condition	$\begin{aligned} & 14 \mathrm{VA} \cos \varphi=032 \\ & 7.2 \mathrm{VA} \cos \varphi=062 \end{aligned}$	$\begin{aligned} & 15 \mathrm{VA} \cos \varphi=03 \\ & 9 \mathrm{VA} \cos \varphi=06 \end{aligned}$	$\begin{aligned} 14 \mathrm{VA} \cos \varphi & =032 \\ 7.2 \mathrm{VA} \cos \varphi & =062 \end{aligned}$
Function indicator	without		
max. switching voltage	$\leq 250 \mathrm{~V} \mathrm{AC/DC}$		
Number of contacts	8 changeover contacts		
Contact arrangement	single contacts		twin contacts
Material of contact-tip	AgCu		
Contact circuit resistance	approx. $30 \mathrm{~m} \Omega$ new condition (24 V DC, 100 mA)		
Maximum making capacity	10 A DC/AC		
Maximum permitted continuous current	5 A, the squares of the single currents must not exceed the sum $98 A^{2}$	5 A, the squares of the single currents must non exceed the sum of $98 \mathrm{~A}^{2}$ at single installation, and 46 A2 at block installation	5 A, the sum of the square of the single currents must not exceed $98 \mathrm{~A}^{2}$
Limiting continuous current	3.5 A (over eight making contact circuits)	3.5 A at single installation 2.4 A at block installation (over eight making contact circuits)	3.5 A (over eight making contact circuits)
Switching frequency	$\leq 3,600$ cycles per hour		
Mechanical endurance	$\geq 10 \times 10^{6}$ switching cycles		
Rated breaking capacity - $\cos \varphi=1.0230$ V AC - $\cos \varphi=0.4230 \mathrm{~V} \mathrm{AC}$ - $\tau=0 \mathrm{~ms} 220 \mathrm{~V}$ DC - $\tau=40 \mathrm{~ms} 220 \mathrm{~V}$ DC		$\begin{aligned} & 1.5 \mathrm{~A} \\ & 1.0 \mathrm{~A} \\ & 0.4 \mathrm{~A} \\ & 0.15 \mathrm{~A} \\ & \hline \end{aligned}$	$\begin{aligned} & 1.5 \mathrm{~A} \\ & 1.0 \mathrm{~A} \\ & 0.4 \mathrm{~A} \\ & 0.10 \mathrm{~A} \\ & \hline \end{aligned}$
Minimum switching capacity	24 V -,	$\mathrm{mA}, \tau=0 \mathrm{~ms}$	$12 \mathrm{~V}-, 5 \mathrm{~mA}, \tau=0 \mathrm{~ms}$
Voltage endurance - at rated breaking capacity - at inherent load - at minimum switching capacity		$\begin{aligned} & , 0 \times 10^{6}(\mathrm{AC}) \\ & , 0 \times 10^{6}(\mathrm{DC}) \\ & , 0 \times 10^{6} \\ & 0 \times 10^{6} \\ & \hline \end{aligned}$	$\begin{aligned} & \geq 1,0 \times 10^{6}(\mathrm{AC}) \\ & \geq 1,0 \times 10^{6}(\mathrm{DC}) \\ & \geq 5,0 \times 10^{6} \\ & \geq 10 \times 10^{6} \end{aligned}$
response time of make contacts	$\leq 25 \mathrm{~ms}$		
closing time of a break contact	$\leq 25 \mathrm{~ms}$		
Rated alternating insulation voltage	2 kV		
degree of pollution	3 acc. to DIN VDE 0110-1		
Impulse voltage withstand level	4.0 kV , voltage form $1.2 / 50 \mu \mathrm{~s}$		
Clearances in air	$\geq 3 \mathrm{~mm}$		
Creep age distances	$\geq 4 \mathrm{~mm}$		
Site altitude	$\leq 2,000 \mathrm{~m}$ above sea level		
Relay enclosure	closed metal cover (AI), transparent display window		
Insulation resistance	$\geq 1 \times 10^{8} \Omega$ in new condition, $U_{P}=500 \mathrm{~V}$		
Degree of protection	IP40 - enclosureIP00 - connecting plug-in bladesIP20 - connecting terminals with plug-in connection for quick-rail fixings		
Climatic type of construction	normal or climatic type of construction for ships		climatic type of construction
Environment tests	values on request		
Weight	about 0.44 kg		

Bistable RH 60, 2 RH 62 All-or-Nothing Relays (Remanence relays)

Relay type Parameters	2 RH 60						2 RH 62						
rated voltages U_{N}	6 V to 220 V DC												
Response voltage	$\leq 0,8 \times U_{N}$												
max. working voltage	$1,1 \times \mathrm{U}_{\mathrm{N}}$												
Rated consumption:	$\begin{aligned} & \leq 2.5 \mathrm{~W} \text { at excitation } \\ & \leq 0.5 \mathrm{~W} \text { at negative excitation over } \mathrm{R}_{\mathrm{V}} \end{aligned}$												
Resistance values $\mathrm{R}_{\mathrm{V}}(\geq 2 \mathrm{~W}) \quad \mathrm{U}_{\mathrm{N}}$ for the negative excitation	6	12	24	32	36	42	48	60	80	100	110	125	220
(included in the scope of $\quad \mathrm{R}_{\mathrm{V}}$ delivery) $[\mathrm{k} \Omega$]	0,082	0,33	1,2	2,2	2,7	3,9	5,6	8,2	15	22	27	33	100
operating mode	pulse or continuous operation (excitation, negative excitation)												
Ambient temperature	$-30^{\circ} \mathrm{C}$ up to $+55^{\circ} \mathrm{C}$ at individual installation $-30^{\circ} \mathrm{C}$ up to $+50^{\circ} \mathrm{C}$ at block installation $-30^{\circ} \mathrm{C}$ up to $+70^{\circ} \mathrm{C}$ at pulse operation, pulse time approx. 100 ms												
Function indicator	optionally without function indicator or with target												
Maximum switching voltage:	$\leq 250 \mathrm{~V} \mathrm{AC/DC}$												
Number of contacts	4 changeover contacts												
Contact arrangement	single contacts							twin contacts					
Material of contact-tip	hard silver AgCu												
Contact circuit resistance	approx. $30 \mathrm{~m} \Omega$ in new condition ($24 \mathrm{~V} \mathrm{DC}, 100 \mathrm{~mA}$,)												
Maximum making capacity	10 A DC/AC												
Maximum permitted continuous current	5 Aat continuous operation, the sum of squares of the single currents must not exceed $64 \mathrm{~A}^{2}$ at single installation, at block installation they must not exceed $23 \mathrm{~A}^{2}$, at pulse operation thy must not exceed $100 \mathrm{~A}^{2}$,												
Limiting continuous current (over four make contacts)	5 A at block installation and pulse operation 4 A at single installation and permanent closing 2,4 A at block installation and permanent closing												
Switching frequency	≤ 600 cycles per hour												
Mechanical endurance	$\geq 10 \times 10^{6}$ cycles without function indication $\geq 0,1 \times 10^{6}$ cycles with target												
Rated breaking capacity - $\cos \varphi=1.0230 \mathrm{~V}$ AC - $\cos \varphi=0.4230 \vee \mathrm{AC}$ - $\tau=0 \mathrm{~ms} 220 \mathrm{~V}$ DC - $\tau=40 \mathrm{~ms} 220 \mathrm{~V}$ DC	$\begin{aligned} & 1.5 \mathrm{~A} \\ & 1.0 \mathrm{~A} \\ & 0.4 \mathrm{~A} \\ & 0.15 \mathrm{~A} \end{aligned}$							$\begin{aligned} & 1.5 \mathrm{~A} \\ & 1.0 \mathrm{~A} \\ & 0.4 \mathrm{~A} \\ & 0.10 \mathrm{~A} \\ & \hline \end{aligned}$					
Minimum switching capacity	24 V DC, $10 \mathrm{~mA}, \tau=0 \mathrm{~ms}$							12 V DC, $5 \mathrm{~mA}, \tau=0 \mathrm{~ms}$					
Voltage endurance - at rated breaking capacity - at inherent load - at minimum switching capacity	$\begin{aligned} & 2,0 \times 10^{6}(\mathrm{AC}) \\ & 1,0 \times 10^{6}(\mathrm{DC}) \\ & 2,5 \times 10^{6} \\ & 10 \times 10^{6} \\ & \hline \end{aligned}$												
response time of make contacts	$\leq 25 \mathrm{~ms}$ without function indicator $\leq 35 \mathrm{~ms}$ with target												
closing time of a break contact	$\leq 30 \mathrm{~ms}$												
Pulse duration at pulse operation	$\begin{aligned} & \geq 100 \mathrm{~ms} \\ & \geq 100 \mathrm{~ms} \end{aligned}$												
Rated alternating insulation voltage	2 kV												
degree of pollution	3 acc. to DIN VDE 0110-1												
Impulse voltage withstand level													
Clearances in air	$\geq 3 \mathrm{~mm}$												
Creep age distances	$\geq 4 \mathrm{~mm}$												
Site altitude	$\leq 2,000 \mathrm{~m}$ above sea level												
Relay enclosure	bifurcated plastic covers (PC), transparent												
Insulation resistance	$\geq 1 \times 10^{8} \Omega$ in new condition, $U_{P}=500 \mathrm{~V}$												
Degree of protection	IP40 - enclosure IP00 - connecting plug-in blades IP20 - connecting terminals with plug-in connection for quick-rail fixings												
Climatic type of construction	Normal type of construction												
Environment tests	values on request												
Weight	about 0.22 kg												

RELOG Plug-In Connection with Screw Terminal for Quick-Rail Fastening and/or Screw Fastening over Fastening Sheet

For all-or-nothing relays of the $2 \mathrm{RH} \ldots, 4 \mathrm{RH}$ type, the plug-in connections allow to accomplish a screw terminal connection while maintaining their plug ability.
The plug-in connections are available in the following types:

- construction with labeling of connections in DIN standards
- construction with labeling of connections in RELOG standards
- construction without diode
- construction with diode between the terminals A 1 (1.7) - cathode and A2 (3.7) - anode.

The plug-in connection is mounted either by snapping onto a rail acc. to DIN EN 50022, or by single arrangement on a fastening sheet that can be supplied as a separate part.
When using plug-in connections for the type 4 RH 10, 4 RH 12, 4 RH 40, 4 RH 42 relays, two plug-in connections have to be installed.

Parameters:

Rated voltage:
250-volt
Rated insulation alternating voltage:
Rated surge voltage:
$2 \mathrm{kV}, 50 \mathrm{~Hz}$ (construction without free-wheeling diode)
Over voltage category: 3.6 kV , voltage form $1.2 / 50 \mu \mathrm{~s}$

Degree of pollution:

III

- 3

Clearances in air: $\quad \geq 2.5 \mathrm{~mm}$
Creep age distances:
Site altitude:
$\geq 4 \mathrm{~mm}$
2,000 m above sea level
Ambient temperature:
$-40^{\circ} \mathrm{C}$ up to $+55^{\circ} \mathrm{C}$ at single installation:
$-40^{\circ} \mathrm{C}$ up to $+50^{\circ} \mathrm{C}$ at block installation
Limiting continuous current:
4 A
Maximum permissible continuous current: 5 A
Number and type of connections: 14 terminals, tensile frame construction with solid wire protection protective-conductor terminal
Connectable conductor sizes: $\quad 1 \times 0.5 \mathrm{~mm}^{2}$ up to $1 \times 2.5 \mathrm{~mm}^{2} \mathrm{Cu}$ single and multicore
$1 \times 1.0 \mathrm{~mm}^{2}$ up to $1 \times 2.5 \mathrm{~mm}^{2}$ Cu finely stranded
Degree of protection: IP 20
Assembly:
Snapping onto mounting rail according to DIN EN 50022-35 $\times 7.5$
Weight:
about 0.12 kg

RELOG Adapter with screw-type terminal for screw fixings at massive walls or switchboards

For all-or-nothing relays of the 2 RH .. ,or 4 RH .. type, the adaptors allow to accomplish a screw terminal connection while maintaining the plug ability. The RELOG adaptors are available in the following types:

- wired type for an all-or-nothing relay of the 2 RH type. .
- not-wired with included accessories for individual suppressor circuit for maximum 2 all-or-nothing relays of the 2 RH type. .
or 1 all-or-nothing relay of the 4 RH type. . (Attention, only 14 terminals are available!)
This offers a variety of possibilities to connect the functions of the all-or-nothing relays contained in the RELOG system.
For in- and outputs, a maximum of 14 terminals is available plus a M 3.5 protective-conductor terminal. The installation of the adaptor with screw-type terminal can be accomplished at massive walls or boards.

Parameters:

Rated voltage:
250-volt
Rated insulation alternating voltage:
$2 \mathrm{kV}, 50 \mathrm{~Hz}$
Rated surge voltage:
4 kV , voltage form $1.2 / 50 \mu \mathrm{~s}$
Over voltage category:
III
degree of pollution: 3
Clearances in air:
$\geq 3 \mathrm{~mm}$
Creep age distances:
$\geq 4 \mathrm{~mm}$
Site altitude:
2,000 m above sea level
Ambient temperature:
$-40^{\circ} \mathrm{C}$ up to $+55^{\circ} \mathrm{C}$
Limiting continuous current:
5 A
Maximum permissible continuous current: 5 A
Number and type of connections:
14 box-type terminals with self-releasing wire protection
1 protective-conductor terminal with M 3.5 mm cylinder head terminal point
Connectable conductor sizes:
Degree of protection:
Assembly:
Weight:
$1 \times 0.5 \mathrm{~mm}^{2}$ up to $1 \times 4,0 \mathrm{~mm}^{2} \mathrm{Cu}$ single and multicore
$1 \times 0.5 \mathrm{~mm}^{2}$ up to $1 \times 2.5 \mathrm{~mm}^{2}$ Cu finely stranded
IP 20 with terminal cover
IP 00 without terminal cover
Screw fastening with 2 cylinder head screws with maximum M4
about 0.2 kg

Plug-in Connections for Solder or Wire-Wrap Termination

For RELOG all-or-nothing relays of the 2 RH .. ,and 4 RH .. type, the plug-in connections allow to accomplish a solder or wirewrap termination while maintaining the plug ability.
The plug-in connections are available in the following types:

- type with solder termination lugs; the connection is done by soldering the solder lugs
- type with wire-wrap lugs; the connection is done by fastening the wire onto the wire lugs
(connecting wires can also be soldered to the wire-wrap lugs)
The plug-in connection is either mounted onto switchboards with appropriate cutouts, or onto rails using by applying screw fixings.
When using the plug-in connection for the type 4 RH 10, 4 RH 12, 4 RH 40, 4 RH 42 RELOG relays, two plug-in connections have to be installed side by side at a horizontal distance of 30 mm .
A connection for the series circuits of both coils has to be accomplished between the two plug-in connections (relay A, terminal 3.7 to relay B, terminal 1.7).

When mounting the supply leads It has to be taken into account for all terminal types that the permitted creeping and air distances are observed according to DIN EN 60810-5 / VDE 0435 Part 140: 1999-04.

Parameters:

Rated voltage:
Rated insulation alternating voltage:
Rated surge voltage:
Over voltage category:
degree of pollution:
Clearances in air:
Creep age distances:
Site altitude:
Ambient temperature:
Limiting continuous current:
Maximum permissible continuous current: 5
Number of terminals:
Construction types of terminals:

Connectable supply leads:
Degree of protection:

Assembly:
Assembly distances:
weight:
III
3

250-volt
$2.5 \mathrm{kV}, 50 \mathrm{~Hz}$
4 kV , voltage form $1.2 / 50 \mu \mathrm{~s}$
$\geq 3 \mathrm{~mm}$
$\geq 4 \mathrm{~mm}$
2,000 m above sea level
$-40^{\circ} \mathrm{C}$ up to $+55^{\circ} \mathrm{C}$
5 A
5 A
$14+2$ protective-conductor terminals (necessary for relays with metal cover)
$22+2$ protective-conductor terminals (necessary for relays with metal cover)
soldering lugs for wire diameters up to $\varnothing 1,2 \mathrm{~mm}$
wire-wrap lugs with rectangular section $1.0 \mathrm{~mm} \times 1.6 \mathrm{~mm}$
Protective-conductor terminals are basically performed as solder terminations.
$0,5 . \mathrm{mm}^{2}$ up to $1 \mathrm{~mm}^{2}$ at solder termination types
1 terminal $\varnothing 0,6 \mathrm{~mm}$ up to $\varnothing 0,8 \mathrm{~mm} \mathrm{Cu}$ at wire termination types
IP 00 terminal end
IP 30 mating side
IP 40 mating side with all-or-nothing relay
Screw fastening with 2 cylinder head screws with maximum M3
minimum distance horizontally from center to center of plug-in connection $\geq 30 \mathrm{~mm}$ minimum distance vertically from center to center of plug-in connection $\geq 105 \mathrm{~mm}$ about 0.04 kg

Diagrams

RELOG 2 RH 01 / 2 RH 30 All-or-Nothing Relay (PC cover)

without function indication

with target

with drop indicator

RELOG 2 RH 01 All-or-Nothing Relay, Diode Type (PC cover)

without function indication

with target

with drop indicator

RELOG 2 RH 02 / 2 RH 32 All-or-Nothing Relay (PC cover)

without function indication

with target

with drop indicator

RELOG 2 RH 02 All-or-Nothing Relay, Diode Type (PC cover)

RELOG 2 RH 01 All-or-Nothing Relay UIC Type, 2 RH 01/2 RH 30 Current Type 50 Hz, 2 RH $3050 \mathrm{~Hz}, 60 \mathrm{~Hz}$ (Al cover)

without function indication

with target

with drop indicator

RELOG 2 RH 02 All-or-Nothing Relay, UIC Type (Al cover)

RELOG 2 RH 60 Bistable All-or-Nothing Relay (PC cover)

RELOG 2 RH 62 Bistable All-or-Nothing Relay (PC cover)

RELOG 4 RH 10 / 4 RH 40 All-or-Nothing Relay (Al cover)

RELOG 4 RH 12 / 4 RH 42 All-or-Nothing Relay (AI cover)

Diagram Rs 802338 (type with free-wheeling diode) Labeling acc. to German DIN standard

Diagram Rs 802339 (type without free-wheeling diode) Labeling acc. to RELOG standard

RELOG Plug-In Connection for Quick-Rail Fixing with screw-type terminal provided with 4 RH. . Relay

Wiring diagram for RELOG all-or-nothing relays: 4 RH 10 / 4 RH 12 / 4 RH 40 / 4 RH 42 with 2 RELOG plug-in connections for quick-rail fixing (DIN labeling, without free-wheeling diode)

Circuit diagram Rs 801487

Dimensioned drawings

RELOG All-or-Nothing Relays 2 RH 01, 2 RH 02, 2 RH 30, 2 RH 32 RELOG All-or-Nothing Relay 2 RH 60, 2 RH 62

Dimensioned drawing Rs 805,540

Dimensioned drawing Rs 805543

Dimensioned drawing Rs 805495

RELOG Plug-In Connection for Quick-Rail Fastening and/or Fastening Sheet with Screw Termination

Dimensioned drawing Rs 805042

RELOG Plug-In Connections, Solder Termination Type

Dimensioned drawing Rs 805202 Sheet 01; 14 poles
RELOG Plug-In Connections, Wire-Wrap Termination Type

Dimensioned drawing Rs 805255 Sheet 01; 14 poles

Dimensioned drawing Rs 805202 Sheet 02; 22 poles

Dimensioned drawing Rs 805255 Sheet 02; 22 poles

RELOG 2 RH 01 All-or-Nothing Relay Types:

DC, 4 changeover contacts, single contacts, AgCu , bifurcated cover IP 40, standard type

12 volt-	1732691000
24 volt-	1732692000
60 volt-	1732693000
110 volt-	1732694000
220 volt-	1732695000
Special voltages	$17326960 \ldots$

DC, 4 changeover contacts, single contacts, AgCu, bifurcated cover, IP 40 target: operating current, standard type

12 volt-	1732703000
24 volt-	1732704000
60 volt-	1732705000
110 volt-	1732706000
220 volt-	1732707000
Special voltages	$17327080 \ldots$

DC, 4 changeover contacts, single contacts, AgCu , bifurcated cover, IP 40 target: closed-circuit, current, standard type

12 volt-
24 volt-
1732709000
1732710000
1732711000
1732712000
1732713000
17327140 .
DC, 4 changeover contacts, single contacts, AgCu , bifurcated cover, IP 40, drop indicator, standard type

12 volt-	1732697000
24 volt-	1732698000
60 volt-	1732699000
110 volt-	1732700000
220 volt-	1732701000
Special voltages	$17327020 \ldots$

DC, 4 changeover contacts, single contacts, AgCu , bifurcated cover, IP 40, climatic / ship type

12 volt-	1771533000
24 volt-	1771534000
60 volt-	1771535000
110 volt-	1771536000
220 volt-	1771537000
Special voltages	$17715380 \ldots$

DC, 4 changeover contacts, single contacts, AgCu , bifurcated cover, IP 40, target operating current, climatic / ship type

12 V -	1771545000
$24 \mathrm{~V}-$	1771546000
$60 \mathrm{~V}-$	1771547000
$110 \mathrm{~V}-$	1771548000
$220 \mathrm{~V}-$	1771549000
Special voltages	$17715000 \ldots$

DC, 4 changeover contacts, single contacts, AgCu , bifurcated cover, IP 40, target closed-circuit current, climatic / ship type

$12 \mathrm{~V}-$	1771551000
$24 \mathrm{~V}-$	1771552000
$60 \mathrm{~V}-$	1771553000
$110 \mathrm{~V}-$	1771554000
$220 \mathrm{~V}-$	1771555000
Special voltages	$17715560 \ldots$

DC, 4 changeover contacts, single contacts, AgCu , bifurcated cover IP 40, drop indicator, climatic / ship type

$12 \mathrm{~V}-$	1771539000
$24 \mathrm{~V}-$	1771540000
$60 \mathrm{~V}-$	1771541000
$110 \mathrm{~V}-$	1771542000
$220 \mathrm{~V}-$	1771543000
Special voltages	$17715440 \ldots$

DC, 4 changeover contacts, single contacts, AgCu , bifurcated cover, IP 40, GP02-40 diode, climatic / ship type

$12 \mathrm{~V}-$	1774018000
$24 \mathrm{~V}-$	1774019000
$60 \mathrm{~V}-$	1774020000
$110 \mathrm{~V}-$	1774021000
$220 \mathrm{~V}-$	1774022000
Special voltages	$17740230 \ldots$

DC, UIC, four changeover contacts, single contacts, AgCu , closed Al cover, IP 40, standard type

12 volt-	1731504500
24 volt-	1731505500
60 volt-	1731506500
110 volt-	1731507500
220 volt-	1731508500
Special voltages	$17315095 \ldots$

DC, UIC, four changeover contacts, single contacts, AgCu, closed Al cover, IP 40, climatic type

12 volt-	1770328500
24 volt-	1770329500
60 volt-	1770330500
110 volt-	1770331500
220 volt-	1770332500
Special voltages	$17703335 \ldots$

DC, UIC, four changeover contacts, single contacts, AgCu , closed Al cover, IP 40, target: operating current, climatic type

$12 \mathrm{~V}-$	1770322500
$24 \mathrm{~V}-$	1770323500
$60 \mathrm{~V}-$	1770324500
$110 \mathrm{~V}-$	1770325500
$220 \mathrm{~V}-$	1770326500
Special voltages	$17703275 \ldots$

DC, UIC, four changeover contacts, single contacts, AgCu , closed Al cover, IP 40, target: closed-circuit current, climatic type

$12 \mathrm{~V}-$	1770316500
$24 \mathrm{~V}-$	1770317500
$60 \mathrm{~V}-$	1770318500
$110 \mathrm{~V}-$	1770319500
$220 \mathrm{~V}-$	1770320500
Special voltages	$17703215 \ldots$

DC, UIC, four changeover contacts, single contacts, AgCu, closed Al cover, IP 40, drop indicator, climatic type

12 V -	1770334500
$24 \mathrm{~V}-$	1770335500
$60 \mathrm{~V}-$	1770336500
$110 \mathrm{~V}-$	1770337500
$220 \mathrm{~V}-$	1770338500
Special voltages	$17703395 \ldots$

DC, 4 changeover contacts, single contacts, AgCu , closed Al cover, IP 40, standard type

12 volt-	1731504000
24 volt-	1731505000
60 volt-	1731506000
110 volt-	1731507000
220 volt-	1731508000
Special voltages	$17315090 \ldots$

DC, 4 changeover contacts, single contacts, AgCu , closed Al cover, IP 40 target: operating current, standard type

12 volt-	1731484000
24 volt-	1731485000
60 volt-	1731486000
110 volt-	1731487000
220 volt-	1731488000
Special voltages	$17314890 \ldots$

DC, 4 changeover contacts, single contacts, AgCu , closed Al cover, IP 40, standard type

12 volt-	1731504000
24 volt-	1731505000
60 volt-	1731506000
110 volt-	1731507000
220 volt-	1731508000
Special voltages	$17315090 \ldots$

DC, 4 changeover contacts, single contacts, AgCu , closed Al cover, IP 40 target: operating current, standard type

12 volt-	1731484000
24 volt-	1731485000
60 volt-	1731486000
110 volt-	1731487000
220 volt-	1731488000
Special voltages	$17314890 \ldots$

DC, 4 changeover contacts, single contacts, AgCu , closed Al cover, IP 40 target: closed-circuit, current, standard type

12 volt-	1731474000
24 volt-	1731475000
60 volt-	1731476000
110 volt-	1731477000
220 volt-	1731478000
Special voltages	$17314790 \ldots$

DC, 4 changeover contacts, single contacts, AgCu , closed Al cover, IP 40, drop indicator, standard type

12 volt-	1731494000
24 volt-	1731495000
60 volt-	1731496000
110 volt-	1731497000
220 volt-	1731498000
Special voltages	$17314990 \ldots$

DC, 4 changeover contacts, single contacts, AgCu , closed Al cover, IP 40, climatic / ship type

12 volt-	1770328000
24 volt-	1770329000
60 volt-	1770330000
110 volt-	1770331000
220 volt-	1770332000
Special voltages	$17703330 \ldots$

DC, 4 changeover contacts, single contacts, AgCu , closed Al cover, IP 40, target operating current, climatic / ship type

12 volt-	1770322000
24 volt-	1770323000
60 volt-	1770324000
110 volt-	1770325000
220 volt-	1770326000
Special voltages	$17703270 \ldots$

DC, 4 changeover contacts, single contacts, AgCu , closed Al cover, IP 40, target closed-circuit current, climatic / ship type

12 volt-	1770316000
24 volt-	1770317000
60 volt-	1770318000
110 volt-	1770319000
220 volt-	1770320000
Special voltages	$17703210 \ldots$

DC, 4 changeover contacts, single contacts, AgCu , closed AI cover, IP 40, drop indicator, climatic / ship type

12 volt-	1770310000
24 volt-	1770311000
60 volt-	1770312000
110 volt-	1770313000
220 volt-	1770314000
Special voltages	$17703150 \ldots$

DC, 4 changeover contacts, single contacts, AgCu , closed PC cover, IP 40, standard type

$12 \mathrm{~V}-$	1732691800
$24 \mathrm{~V}-$	1732692800
$60 \mathrm{~V}-$	1732693800
$110 \mathrm{~V}-$	1732694800
$220 \mathrm{~V}-$	1732695800
Special voltages	$17326968 \ldots$

DC, 4 changeover contacts, single contacts, AgCu , closed PC cover, IP 40, climatic / ship type

$12 \mathrm{~V}-$	1771533800
$24 \mathrm{~V}-$	1771534800
$60 \mathrm{~V}-$	1771535800
$110 \mathrm{~V}-$	1771536800
$220 \mathrm{~V}-$	1771537800
Special voltages	$17715388 \ldots$

DC, UIC, four changeover contacts, single contacts, AgCu , closed Al cover, IP 40, standard type

0.015 A	1731509438
0.17 A	1731509439
0.24 A	1731509440
0.35 A	1731509441
0.46 A	1731509447
0.5 A	1731509442
0.9 A	1731509443
1.5 A	1731509444
2.45 A	1731509445
4.15 A	1731509446
for other rated currents	$17315094 .$.

DC, UIC, four changeover contacts, single contacts, AgCu , closed Al cover, IP 40, climatic/ship type

0.015 A	1770333438
0.17 A	1770333439
0.24 A	1770333440
0.35 A	1770333441
0.46 A	1770333447
0.5 A	1770333442
0.9 A	1770333443
1.5 A	1770333444
2.45 A	1770333445
4.15 A	1770333446
for other rated currents	$17703334 .$.

DC, UIC, four changeover contacts, single contacts, AgCu,
closed AI cover, IP 40, drop indicator, climatic/ship type

0.015 A	1770315438
0.17 A	1770315439
0.24 A	1770315440
0.35 A	1770315441
0.46 A	1770315447
0.5 A	1770315442
0.9 A	1770315443
1.5 A	1770315444
2.45 A	1770315445
4.15 A	1770315446
for other rated currents	$17703154 .$.

DC, 4 changeover contacts, single contacts, AgPd30, bifurcated PC cover, IP 40, standard type

12 V -	1732721000
$24 \mathrm{~V}-$	1732722000
$60 \mathrm{~V}-$	1732723000
$110 \mathrm{~V}-$	1732724000
220 V -	1732725000
Special voltages	$17327260 \ldots$

DC, 4 changeover contacts, single contacts, AgPd30, bifurcated PC cover, IP 40, climatic / ship type

12 volt-	1771563000
24 volt-	1771564000
60 volt-	1771565000
110 volt-	1771566000
220 volt-	1771567000
Special voltages	$17715680 \ldots$

RELOG 2 RH 02 All-or-Nothing Relay Types:

DC, 4 changeover contacts, twin contacts, AgCu , closed PC cover, IP 40, climatic / ship type

$12 \mathrm{~V}-$	1771292400
$24 \mathrm{~V}-$	1771293400
$60 \mathrm{~V}-$	1771294400
$110 \mathrm{~V}-$	1771295400
$220 \mathrm{~V}-$	1771296400
Special voltages	$17712974 .$.

DC, 4 changeover contacts, twin contacts, AgCu , closed PC cover, IP 40, target operating current, climatic / ship type

12 volt-	1771298400
24 volt-	1771299400
60 volt-	1771300400
110 volt-	1771301400
220 volt-	1771302400
Special voltages	$17713034 \ldots$

DC, 4 changeover contacts, twin contacts, AgCu4, closed PC cover, IP 40, target closed-circuit current, climatic / ship type

12 V -	1771304400
$24 \mathrm{~V}-$	1771305400
$60 \mathrm{~V}-$	1771306400
$110 \mathrm{~V}-$	1771307400
$220 \mathrm{~V}-$	1771308400
Special voltages	$17713094 \ldots$

DC, 4 changeover contacts, twin contacts, AgCu , closed PC cover, IP 40, drop indicator, climatic / ship type

12 volt-	1771856000
24 volt-	1771857000
60 volt-	1771858000
110 volt-	1771859000
220 volt-	1771860000
Special voltages	$17718610 \ldots$

DC, 4 changeover contacts, twin contacts, AgCu , closed PC cover, IP 40; GP02-40 diode, climatic / ship type

12 V -	1774012400
$24 \mathrm{~V}-$	1774013400
$60 \mathrm{~V}-$	1774014400
$110 \mathrm{~V}-$	1774015400
220 V -	1774016400
Special voltages	$17740174 \ldots$

DC, 4 changeover contacts, twin contacts, AgCu , closed PC cover, IP 40, target: operating current, GP02-40 diode, climatic/ship type

$12 \mathrm{~V}-$	1774030400
$24 \mathrm{~V}-$	1774031400
$60 \mathrm{~V}-$	1774032400
$110 \mathrm{~V}-$	1774033400
$220 \mathrm{~V}-$	1774034400
Special voltages	$17740354 \ldots$

DC, 4 changeover contacts, twin contacts, AgCu , closed PC cover, IP 40, target: closed-circuit current, GP02-40 diode, climatic/ship type

$12 \mathrm{~V}-$	1774040400
$24 \mathrm{~V}-$	1774041400
$60 \mathrm{~V}-$	1774042400
$110 \mathrm{~V}-$	1774043400
$220 \mathrm{~V}-$	1774044400
Special voltages	$17740454 \ldots$

DC, 4 changeover contacts, twin contacts, AgCu, closed PC cover, IP 40, drop indicator, GP02-40 diode, climatic / ship type

12 V -	1774000000
$24 \mathrm{~V}-$	1774001000
$60 \mathrm{~V}-$	1774002000
$110 \mathrm{~V}-$	1774003000
$220 \mathrm{~V}-$	1774004000
Special voltages	$17740050 \ldots$

DC, 4 changeover contacts, twin contacts, AgCu, closed PC cover, IP 50, climatic / ship type

12 volt-	1771292000
24 volt-	1771293000
60 volt-	1771294000
110 volt-	1771295000
220 volt-	1771296000
Special voltages	$17712970 \ldots$

DC, 4 changeover contacts, twin contacts, AgCu, closed PC cover, IP 50, target operating current, climatic / ship type

12 volt-	1771298000
24 volt-	1771299000
60 volt-	1771300000
110 volt-	1771301000
220 volt-	1771302000
Special voltages	$17713030 \ldots$

DC, 4 changeover contacts, twin contacts, AgCu4, closed PC cover IP 50, target closed-circuit current, climatic / ship type

$12 \mathrm{~V}-$	1771304000
$24 \mathrm{~V}-$	1771305000
$60 \mathrm{~V}-$	1771306000
$110 \mathrm{~V}-$	1771307000
$220 \mathrm{~V}-$	1771308000
Special voltages	$17713090 \ldots$

DC, 4 changeover contacts, twin contacts, AgCu, closed PC cover, IP 50, GP02-40 diode, climatic / ship type

$12 \mathrm{~V}-$	1774012000
$24 \mathrm{~V}-$	1774013000
$60 \mathrm{~V}-$	1774014000
$110 \mathrm{~V}-$	1774015000
$220 \mathrm{~V}-$	1774016000
Special voltages	$17740170 \ldots$

DC, UIC, four changeover contacts, twine contacts, AgCu , closed Al cover, IP 40, climatic type

$12 \mathrm{~V}-$	1771292500
$24 \mathrm{~V}-$	1771293500
$60 \mathrm{~V}-$	1771294500
$110 \mathrm{~V}-$	1771295500
$220 \mathrm{~V}-$	1771296500
Special voltages	$17712975 \ldots$

DC, UIC, four changeover contacts, twine contacts, AgCu , closed Al cover, IP 40, target: operating current, climatic type

$12 \mathrm{~V}-$	1771298500
$24 \mathrm{~V}-$	1771299500
$60 \mathrm{~V}-$	1771300500
$110 \mathrm{~V}-$	1771301500
$220 \mathrm{~V}-$	1771302500
Special voltages	$17713035 \ldots$

DC, UIC, four changeover contacts, twine contacts, AgCu , closed Al cover, IP 40, target: closed-circuit current, climatic type

$12 \mathrm{~V}-$	1771304500
$24 \mathrm{~V}-$	1771305500
$60 \mathrm{~V}-$	1771306500
$110 \mathrm{~V}-$	1771307500
$220 \mathrm{~V}-$	1771308500
Special voltages	$17713095 \ldots$

DC, UIC, four changeover contacts, twine contacts, AgCu , closed Al cover, IP 40, drop indicator, climatic type

$12 \mathrm{~V}-$	1771310500
$24 \mathrm{~V}-$	1771311500
$60 \mathrm{~V}-$	1771312500
$110 \mathrm{~V}-$	1771313500
$220 \mathrm{~V}-$	1771314500
Special voltages	$17713155 \ldots$

DC, four changeover contacts, twin contacts, $\mathrm{AgNi} 0,156 \mu \mathrm{~m} \mathrm{Au}$, closed PC cover, IP 40, climatic/ship type

$12 \mathrm{~V}-$	1774500000
$24 \mathrm{~V}-$	1774501000
$60 \mathrm{~V}-$	1774502000
$110 \mathrm{~V}-$	1774503000
$220 \mathrm{~V}-$	1774504000
Special voltages	$17745050 \ldots$

DC, four changeover contacts, twin contacts, $\mathrm{AgNi0}, 156 \mu \mathrm{~m} \mathrm{Au}$, closed PC cover, IP 40, target: operating current, climatic/ship type

$12 \mathrm{~V}-$	1774537000
$24 \mathrm{~V}-$	1774538000
$60 \mathrm{~V}-$	1774539000
$110 \mathrm{~V}-$	1774540000
$220 \mathrm{~V}-$	1774541000
Special voltages	$17745420 \ldots$

DC, four changeover contacts, twin contacts, $\mathrm{AgNi0}, 156 \mu \mathrm{~m} \mathrm{Au}$, closed PC cover, IP 40, target: closed-circuit current, climatic/ship type

$12 \mathrm{~V}-$	1774543000
$24 \mathrm{~V}-$	1774544000
$60 \mathrm{~V}-$	1774545000
$110 \mathrm{~V}-$	1774546000
$220 \mathrm{~V}-$	1774547000
Special voltages	$17745480 \ldots$

DC, four changeover contacts, twin contacts, $\mathrm{AgNi0}, 156 \mu \mathrm{~m} \mathrm{Au}$, closed PC cover, IP 40, target: drop indicator,
climatic/ship type

12 V -	1774549000
$24 \mathrm{~V}-$	1774550000
$60 \mathrm{~V}-$	1774551000
$110 \mathrm{~V}-$	1774552000
$220 \mathrm{~V}-$	1774553000
Special voltages	$17745540 \ldots$

DC, four changeover contacts, twin contacts, $\mathrm{AgNi0}, 156 \mu \mathrm{~m} \mathrm{Au}$, closed PC cover, IP 50, climatic type

12 V -	1774512000
$24 \mathrm{~V}-$	1774513000
$60 \mathrm{~V}-$	1774514000
$110 \mathrm{~V}-$	1774515000
$220 \mathrm{~V}-$	1774516000
Special voltages	$17745170 \ldots$

DC, four changeover contacts, twin contacts, $\mathrm{AgNi0}, 156 \mu \mathrm{~m} \mathrm{Au}$, closed PC cover, IP 50, target: operating current, climatic type

12 volt-	1774518000
24 volt-	1774519000
60 volt-	1774520000
110 volt-	1774521000
220 volt-	1774522000
Special voltages	$17745230 \ldots$

DC, four changeover contacts, twin contacts, AgNi0,15 $6 \mu \mathrm{~m} \mathrm{Au}$, closed PC cover, IP 50, target: closed-circuit current, climatic type

12 volt-	1774524000
24 volt-	1774525000
60 volt-	1774526000
110 volt-	1774527000
220 volt-	1774528000
Special voltages	$17745290 \ldots$

DC, four changeover contacts, twin contacts, $\mathrm{AgNi0}, 156 \mu \mathrm{~m} \mathrm{Au}$, closed PC cover, IP 40, target: drop indicator, GP02-40 diode, climatic/ship type

$12 \mathrm{~V}-$	1774506000
$24 \mathrm{~V}-$	1774507000
$60 \mathrm{~V}-$	1774508000
$110 \mathrm{~V}-$	1774509000
$220 \mathrm{~V}-$	1774510000
Special voltages	$17745110 \ldots$

DC, four changeover contacts, twin contacts AgPd30,
closed PC cover, IP 40, climatic/ship type
12 volt-
24 volt-
60 volt-
110 volt-
220 volt-
Special voltages

1771868000
1771869000
1771870000
1771871000
1771872000
17718730 . .
DC, four changeover contacts, twin contacts AgPd30, closed PC cover, IP 40, target: operating current, climatic/ship type

12 volt-	1771874000
24 volt-	1771875000
60 volt-	1771876000
110 volt-	1771877000
220 volt-	1771878000
Special voltages	$17718790 \ldots$

DC, four changeover contacts, twin contacts AgPd30, closed PC cover, IP 40, target: closed-circuit current, climatic/ship type

12 volt-	1771880000
24 volt-	1771881000
60 volt-	1771882000
110 volt-	1771883000
220 volt-	1771884000
Special voltages	$17718850 \ldots$

DC, four changeover contacts, twin contacts AgPd30, closed PC cover, IP 40, target: drop indicator,
climatic/ship type

12 volt-	1771886000
24 volt-	1771887000
60 volt-	1771888000
110 volt-	1771889000
220 volt-	177189000
Special voltages	$17718910 \ldots$

DC, four changeover contacts, twin contacts AgPd30, closed PC cover, IP 40, GP02-40 diode,
climatic/ship type

12 volt-	1774050000
24 volt-	1774051000
60 volt-	1774052000
110 volt-	1774053000
220 volt-	1774054000
Special voltages	$17740550 \ldots$

DC, four changeover contacts, twin contacts AgPd30, closed PC cover, IP 40, , GP02-40 diode, drop indicator, climatic/ship type

12 volt-	1774006000
24 volt-	1774007000
60 volt-	1774008000
110 volt-	1774009000
220 volt-	1774010000
Special voltages	$17740110 \ldots$

DC, UIC, four changeover contacts, twin contacts, AgPd30, closed AI cover, IP 40, climatic type

12 volt-	1771868500
24 volt-	1771869500
60 volt-	1771870500
110 volt-	1771871500
220 volt-	1771872500
Special voltages	$17718735 \ldots$

DC, UIC, four changeover contacts, twin contacts, AgPd30, closed AI cover, IP 40, target: operating current, climatic type

12 volt-	1771874500
24 volt-	1771875500
60 volt-	1771876500
110 volt-	1771877500
220 volt-	1771878500
Special voltages	$17718795 \ldots$

DC, UIC, four changeover contacts, twin contacts, AgPd30, closed AI cover, IP 40, target: closed-circuit current, climatic type

12 volt-	1771880500
24 volt-	1771881500
60 volt-	1771882500
110 volt-	1771883500
220 volt-	1771884500
Special voltages	$17718855 \ldots$

RELOG 4 RH 10 All-or-Nothing Relay Types:

DC, eight changeover contacts, single contacts, AgCu , closed AI cover, IP 40, standard type

12 V -	1731464000
$24 \mathrm{~V}-$	1731465000
$60 \mathrm{~V}-$	1731466000
$110 \mathrm{~V}-$	1731467000
$220 \mathrm{~V}-$	1731468000
Special voltages	$17314690 \ldots$

DC, eight changeover contacts, single contacts, AgCu , closed Al cover, IP 40, climatic/ship type

12 volt-	1770437000
24 volt-	1770438000
60 volt-	1770439000
110 volt-	1770440000
220 volt-	1770441000
Special voltages	$17704420 \ldots$

RELOG 4 RH 12 All-or-Nothing Relay Types:

DC, eight changeover contacts, twin contacts, AgCu , closed AI cover, IP 40, climatic type

$12 \mathrm{~V}-$	1770510000
$24 \mathrm{~V}-$	1770511000
$60 \mathrm{~V}-$	1770512000
$110 \mathrm{~V}-$	1770513000
$220 \mathrm{~V}-$	1770514000
Special voltages	$17705150 \ldots$

RELOG 2 RH 60 All-or-Nothing Relay Types:

remanence relay, four changeover contacts, single contacts, AgCu , bifurcated PC cover, IP 40, standard type

$12 \mathrm{~V}-$	1731880000
$24 \mathrm{~V}-$	1731881000
$60 \mathrm{~V}-$	1731882000
$110 \mathrm{~V}-$	1731883000
$220 \mathrm{~V}-$	1731884000
Special voltages	$17318850 \ldots$

remanence relay, four changeover contacts, single contacts, AgCu , closed PC cover, IP 40, target: operating current,
Standard type

$12 \mathrm{~V}-$	1731524000
$24 \mathrm{~V}-$	1731525000
$60 \mathrm{~V}-$	1731526000
$110 \mathrm{~V}-$	1731527000
$220 \mathrm{~V}-$	1731528000
Special voltages	$17315290 \ldots$

RELOG 2 RH 62 All-or-Nothing Relay Types:

remanence relay, four changeover contacts, single contacts, AgCu , closed PC cover, IP 40,
Standard type

12 volt-	1731880990
24 volt-	1731881990
60 volt-	1731882990
110 volt-	1731883990
220 volt-	1731884990
Special voltages	1731885990

DC, UIC, four changeover contacts, twin contacts, AgPd30, closed Al cover, IP 40, drop indicator, climatic type

12 volt-	1771886500
24 volt-	1771887500
60 volt-	1771888500
110 volt-	1771889500
220 volt-	1771890500
Special voltages	$17718915 \ldots$

DC, UIC, eight changeover contacts, single contacts, AgCu , closed Al cover, IP 40, standard type

$12 \mathrm{~V}-$	1731464500
$24 \mathrm{~V}-$	1731465500
$60 \mathrm{~V}-$	1731466500
$110 \mathrm{~V}-$	1731467500
$220 \mathrm{~V}-$	1731468500
Special voltages	$17314695 \ldots$

DC, UIC, eight changeover contacts, single contacts, AgCu , closed AI cover, IP 40, climatic type

12 volt-	1770437500
24 volt-	1770438500
60 volt-	1770439500
110 volt-	1770440500
220 volt-	1770441500
Special voltages	$17704425 \ldots$

DC, UIC, eight changeover contacts, twine contacts, AgCu , closed AI cover, IP 40, climatic type

$12 \mathrm{~V}-$	1770510500
$24 \mathrm{~V}-$	1770511500
$60 \mathrm{~V}-$	1770512500
$110 \mathrm{~V}-$	1770513500
$220 \mathrm{~V}-$	1770514500
Special voltages	$17705155 \ldots$

remanence relay, four changeover contacts, single contacts, AgCu , bifurcated PC cover, IP 40, target: closed-circuit current, standard type

$12 \mathrm{~V}-$	1731724000
$24 \mathrm{~V}-$	1731725000
$60 \mathrm{~V}-$	1731726000
$110 \mathrm{~V}-$	1731727000
$220 \mathrm{~V}-$	1731728000
Special voltages	$17317290 \ldots$

remanence relay, four changeover contacts, single contacts, AgCu , closed PC cover, IP 40, target: operating current, Standard type

$12 \mathrm{~V}-$	1731249000
$24 \mathrm{~V}-$	1731250000
$60 \mathrm{~V}-$	1731251000
$110 \mathrm{~V}-$	1731252000
$220 \mathrm{~V}-$	1731253000
Special voltages	$17312540 \ldots$

remanence relay, four changeover contacts, single contacts, AgCu , closed PC cover, IP 40, target: closed-circuit current,
Standard type

12 volt-	1731714000
24 volt-	1731715000
60 volt-	1731716000
110 volt-	1731717000
220 volt-	1731718000
Special voltages	$17317190 \ldots$

RELOG 2 RH 30 All-or-Nothing Relay Types:

$\mathrm{AC}, 50 \mathrm{~Hz}$, four changeover contacts, single contacts, AgCu , bifurcated PC cover, IP 40,
Standard type

$24 \mathrm{~V} \sim$	1732791000
$42 \mathrm{~V} \sim$	1732792000
$60 \mathrm{~V} \sim$	1732793000
$127 \mathrm{~V} \sim$	1732794000
$230 \mathrm{~V} \sim$	1732795000
Special voltages	$17327960 \ldots$

$\mathrm{AC}, 50 \mathrm{~Hz}$, four changeover contacts, single contacts, AgCu , closed PC cover, IP 40, target: operating current,
Standard type

$24 \mathrm{~V} \sim$	1732803000
$42 \mathrm{~V} \sim$	1732804000
$60 \mathrm{~V} \sim$	1732805000
$127 \mathrm{~V} \sim$	1732806000
$230 \mathrm{~V} \sim$	1732807000
Special voltages	$17328080 \ldots$

DC, 50 Hz , four changeover contacts, single contacts, AgCu , bifurcated PC cover, IP 40, target: closed-circuit current, Standard type

$24 \mathrm{~V} \sim$	1732809000
$42 \mathrm{~V} \sim$	1732810000
$60 \mathrm{~V} \sim$	1732811000
$127 \mathrm{~V} \sim$	1732812000
$230 \mathrm{~V} \sim$	1732813000
Special voltages	$17328140 \ldots$

$\mathrm{AC}, 50 \mathrm{~Hz}$, four changeover contacts, single contacts, AgCu , bifurcated PC cover, IP 40, target: drop indicator,
Standard type

$24 \mathrm{~V} \sim$	1732797000
$42 \mathrm{~V} \sim$	1732798000
$60 \mathrm{~V} \sim$	1732799000
$127 \mathrm{~V} \sim$	1732800000
$230 \mathrm{~V} \sim$	1732801000
Special voltages	$17328020 \ldots$

$\mathrm{AC}, 50 \mathrm{~Hz}$, four changeover contacts, single contacts, AgCu , bifurcated PC cover, IP 40,
climatic/ship type

$24 \mathrm{~V} \sim$	1771575000
$42 \mathrm{~V} \sim$	1771576000
$60 \mathrm{~V} \sim$	1771577000
$127 \mathrm{~V}_{\sim}$	1771578000
$230 \mathrm{~V} \sim$	1771579000
Special voltages	$17715800 \ldots$

$\mathrm{AC}, 50 \mathrm{~Hz}$, four changeover contacts, single contacts, AgCu , closed PC cover, IP 40, target: operating current, climatic/ship type

$24 \mathrm{~V} \sim$	1771587000
$42 \mathrm{~V} \sim$	1771588000
$60 \mathrm{~V} \sim$	1771589000
$127 \mathrm{~V} \sim$	1771590000
$230 \mathrm{~V} \sim$	1771591000
Special voltages	$17715920 \ldots$

$\mathrm{AC}, 50 \mathrm{~Hz}$, four changeover contacts, single contacts, AgCu , bifurcated PC cover, IP 40, target: closed-circuit current, climatic/ship type

$24 \mathrm{~V} \sim$	1771593000
$42 \mathrm{~V} \sim$	1771594000
$60 \mathrm{~V} \sim$	1771595000
$127 \mathrm{~V}_{\sim}$	1771596000
$230 \mathrm{~V} \sim$	1771597000
Special voltages	$17715980 \ldots$

DC, 50 Hz , four changeover contacts, single contacts, AgCu , bifurcated PC cover, IP 40, target: drop indicator,
climatic/ship type

$24 \mathrm{~V} \sim$	1771581000
$42 \mathrm{~V} \sim$	1771582000
$60 \mathrm{~V} \sim$	1771583000
$127 \mathrm{~V} \sim$	1771584000
$230 \mathrm{~V} \sim$	1771585000
Special voltages	$17715860 \ldots$

$\mathrm{AC}, 50 \mathrm{~Hz}$, four changeover contacts, single contacts, AgCu , closed PC cover, IP 40,
Standard type

$24 \mathrm{~V} \sim$	1732791800
$42 \mathrm{~V}_{\sim}$	1732792800
$60 \mathrm{~V}_{\sim}$	1732793800
$127 \mathrm{~V}_{\sim}$	1732794800
$230 \mathrm{~V} \sim$	1732795800
Special voltages	$17327968 \ldots$

$\mathrm{DC}, 50 \mathrm{~Hz}$, four changeover contacts, single contacts, AgCu , closed PC cover, IP 40,
climatic/ship type

$24 \mathrm{~V} \sim$	1771575800
$42 \mathrm{~V} \sim$	1771576800
$60 \mathrm{~V} \sim$	1771577800
$127 \mathrm{~V} \sim$	1771578800
$230 \mathrm{~V} \sim$	1771579800
Special voltages	$17715808 \ldots$

$\mathrm{AC}, 50 \mathrm{~Hz}$, four changeover contacts, single contacts, AgCu , closed Al cover, IP 40,
Standard type

$24 \mathrm{~V} \sim$	1731280000
$42 \mathrm{~V} \sim$	1731281000
$60 \mathrm{~V}_{\sim}$	1731282000
$127 \mathrm{~V} \sim$	1731283000
$230 \mathrm{~V} \sim$	1731284000
Special voltages	$17312850 \ldots$

$\mathrm{AC}, 50 \mathrm{~Hz}$, four changeover contacts, single contacts, AgCu , closed AI cover, IP 40,
climatic type

$24 \mathrm{~V} \sim$	1770455000
$42 \mathrm{~V} \sim$	1770456000
$60 \mathrm{~V} \sim$	1770457000
$127 \mathrm{~V} \sim$	1770458000
$230 \mathrm{~V} \sim$	1770459000
Special voltages	$17704600 \ldots$

$\mathrm{DC}, 50 \mathrm{~Hz}$, four changeover contacts, single contacts, AgCu , closed Al cover, IP 40, target: operating current,
climatic type

$24 \mathrm{~V} \sim$	1770487000
$42 \mathrm{~V} \sim$	1770488000
$60 \mathrm{~V} \sim$	1770489000
$127 \mathrm{~V} \sim$	1770490000
$230 \mathrm{~V} \sim$	1770491000
Special voltages	$17704920 \ldots$

$\mathrm{AC}, 50 \mathrm{~Hz}$, four changeover contacts, single contacts, AgCu , closed AI cover, IP 40, target: closed-circuit current, climatic type

$24 \mathrm{~V} \sim$	1770493000
$42 \mathrm{~V} \sim$	1770494000
$60 \mathrm{~V} \sim$	1770495000
$127 \mathrm{~V} \sim$	1770496000
$230 \mathrm{~V} \sim$	1770497000
Special voltages	$17704980 \ldots$

$\mathrm{AC}, 50 \mathrm{~Hz}$, four changeover contacts, single contacts, AgCu4, closed AI cover, IP 40, target: drop indicator,
climatic type

$24 \mathrm{~V} \sim$	1770481000
$42 \mathrm{~V} \sim$	1770482000
$60 \mathrm{~V} \sim$	1770483000
$127 \mathrm{~V}_{\sim}$	1770484000
$230 \mathrm{~V} \sim$	1770485000
Special voltages	$17704860 \ldots$

$\mathrm{AC}, 60 \mathrm{~Hz}$, four changeover contacts, single contacts, AgCu , closed Al cover, IP 40,
climatic/ship type

$24 \mathrm{~V} \sim$	1770455600
$42 \mathrm{~V} \sim$	1770456600
$60 \mathrm{~V} \sim$	1770457600
$127 \mathrm{~V} \sim$	1770458600
$220 \mathrm{~V} \sim$	1770459600
Special voltages	$17704600 \ldots$

$\mathrm{AC}, 50 \mathrm{~Hz}$, four changeover contacts, single contacts, AgCu , closed AI cover, IP 40, climatic/ship type

$0.34 \mathrm{~A} \sim$	1770460450
$0.40 \mathrm{~A} \sim$	1770460451
$0.53 \mathrm{~A} \sim$	1770460452
$0.60 \mathrm{~A} \sim$	1770460453
$0.70 \mathrm{~A} \sim$	1770460454
$0.95 \mathrm{~A} \sim$	1770460455
$1.33 \mathrm{~A} \sim$	1770460456
$1.80 \mathrm{~A} \sim$	1770460457

RELOG 2 RH 32 All-or-Nothing Relay Types:

$\mathrm{AC}, 50 \mathrm{~Hz}$, four changeover contacts, twin contacts, AgCu , closed PC cover, IP 40,
climatic/ship type

$24 \mathrm{~V} \sim$	1771854400
$42 \mathrm{~V} \sim$	1771855400
$60 \mathrm{~V} \sim$	1771838400
$127 \mathrm{~V} \sim$	1771839400
$230 \mathrm{~V} \sim$	1771840400
Special voltages	$17718414 \ldots$

$\mathrm{AC}, 50 \mathrm{~Hz}$, four changeover contacts, twin contacts, AgCu , closed PC cover, IP 40, target: operating current, climatic/ship type

$24 \mathrm{~V} \sim$	1771842400
$42 \mathrm{~V} \sim$	1771843400
$60 \mathrm{~V} \sim$	1771844400
$127 \mathrm{~V} \sim$	1771845400
$230 \mathrm{~V} \sim$	1771846400
Special voltages	$17718474 \ldots$

$\mathrm{AC}, 60 \mathrm{~Hz}$, four changeover contacts, single contacts, AgCu , closed AI cover, IP 40, target: operating current, climatic/ship type

$24 \mathrm{~V} \sim$	1770487600
$42 \mathrm{~V} \sim$	1770488600
$60 \mathrm{~V} \sim$	1770489600
$127 \mathrm{~V}_{\sim}$	1770490600
$220 \mathrm{~V}_{\sim}$	1770491600
Special voltages	$17704926 \ldots$

$\mathrm{AC}, 60 \mathrm{~Hz}$, four changeover contacts, single contacts, AgCu , closed AI cover, IP 40, target: closed-circuit current, climatic/ship type

$24 \mathrm{~V} \sim$	1770493600
$42 \mathrm{~V}_{\sim}$	1770494600
$60 \mathrm{~V}_{\sim}$	1770495600
$127 \mathrm{~V}_{\sim}$	1770496600
$220 \mathrm{~V} \sim$	1770497600
Special voltages	$17704986 \ldots$

$\mathrm{AC}, 60 \mathrm{~Hz}$, four changeover contacts, single contacts, AgCu4, closed Al cover, IP 40, target: drop indicator, climatic/ship type

$24 \mathrm{~V} \sim$	1770481600
$42 \mathrm{~V} \sim$	1770482600
$60 \mathrm{~V} \sim$	1770483600
$127 \mathrm{~V}_{\sim}$	1770484600
$220 \mathrm{~V} \sim$	1770485600
Special voltages	1770486600

$\mathrm{AC}, 50 \mathrm{~Hz}$, four changeover contacts, single contacts, AgCu , closed AI cover, IP 40,
Standard type

$0.34 \mathrm{~A} \sim$	1731285450
$0.40 \mathrm{~A} \sim$	1731285451
$0.53 \mathrm{~A} \sim$	1731285452
$0.60 \mathrm{~A} \sim$	1731285453
$0.70 \mathrm{~A} \sim$	1731285454
$0.95 \mathrm{~A} \sim$	1731285455
$1.33 \mathrm{~A} \sim$	1731285456
$1.80 \mathrm{~A} \sim$	1731285457

$\mathrm{AC}, 50 \mathrm{~Hz}$, four changeover contacts, twin contacts, AgCu , closed PC cover, IP 40, target: closed-circuit current, climatic/ship type

$24 \mathrm{~V} \sim$	1771848400
$42 \mathrm{~V} \sim$	1771849400
$60 \mathrm{~V} \sim$	1771850400
$127 \mathrm{~V} \sim$	1771851400
$230 \mathrm{~V} \sim$	1771852400
Special voltages	$17718534 \ldots$

$\mathrm{AC}, 50 \mathrm{~Hz}$, four changeover contacts, twin contacts, AgCu , closed PC cover, IP 40, target: drop indicator, climatic/ship type

$24 \mathrm{~V} \sim$	1771862000
$42 \mathrm{~V} \sim$	1771863000
$60 \mathrm{~V} \sim$	1771864000
$127 \mathrm{~V}_{\sim}$	1771865000
$230 \mathrm{~V} \sim$	1771866000
Special voltages	$17718670 \ldots$

AC, 50 Hz , four changeover contacts, twin contacts,
AgNi0,15 $6 \mu \mathrm{~m}$ Au, closed PC cover, IP 40, climatic type

$24 \mathrm{~V} \sim$	1774555000
$42 \mathrm{~V} \sim$	1774556000
$60 \mathrm{~V} \sim$	1774557000
$127 \mathrm{~V} \sim$	1774558000
$230 \mathrm{~V} \sim$	1774559000
Special voltages	$17745600 \ldots$

AC, 50 Hz , four changeover contacts, twin contacts,
AgNi0,15 $6 \mu \mathrm{~m}$ Au, closed PC cover, IP 40, target: operating current, climatic type

$24 \mathrm{~V} \sim$	1774561000
$42 \mathrm{~V} \sim$	1774562000
$60 \mathrm{~V} \sim$	1774563000
$127 \mathrm{~V} \sim$	1774564000
$230 \mathrm{~V} \sim$	1774565000
Special voltages	$17745660 \ldots$

AC, 50 Hz , four changeover contacts, twin contacts,
AgNi0,15 $6 \mu \mathrm{~m} \mathrm{Au}$, closed PC cover, IP 40, target: closed-circuit current, climatic type

$24 \mathrm{~V} \sim$	1774567000
$42 \mathrm{~V} \sim$	1774568000
$60 \mathrm{~V} \sim$	1774569000
$127 \mathrm{~V} \sim$	1774570000
$230 \mathrm{~V} \sim$	1774571000
Special voltages	$17745720 \ldots$

AC, 50 Hz , four changeover contacts, twin contacts,
AgNi0,15 $6 \mu \mathrm{~m} \mathrm{Au}$, closed PC cover, IP 40, target: drop indicator, climatic type

$24 \mathrm{~V} \sim$	1774573000
$42 \mathrm{~V} \sim$	1774574000
$60 \mathrm{~V} \sim$	1774575000
$127 \mathrm{~V} \sim$	1774576000
$230 \mathrm{~V} \sim$	1774577000
Special voltages	$17745780 \ldots$

RELOG 4 RH 40 All-or-Nothing Relay Types:

$\mathrm{AC}, 50 \mathrm{~Hz}$, eight changeover contacts, single contacts, AgCu , closed Al cover, IP 40,
Standard type

$24 \mathrm{~V} \sim$	1731444000
$42 \mathrm{~V} \sim$	1731445000
$60 \mathrm{~V} \sim$	1731446000
$127 \mathrm{~V} \sim$	1731447000
$230 \mathrm{~V} \sim$	1731448000
Special voltages	$17314490 \ldots$

$\mathrm{AC}, 50 \mathrm{~Hz}$, eight changeover contacts, single contacts, AgCu , closed Al cover, IP 40,
climatic/ship type

$24 \mathrm{~V} \sim$	1770443000
$42 \mathrm{~V} \sim$	1770444000
$60 \mathrm{~V} \sim$	1770445000
$127 \mathrm{~V} \sim$	1770446000
$230 \mathrm{~V} \sim$	1770447000
Special voltages	$17704480 \ldots$

RELOG 4 RH 42 All-or-Nothing Relay Types:

$\mathrm{AC}, 50 \mathrm{~Hz}$, eight changeover contacts, single contacts, AgCu , closed Al cover, IP 40,
climatic type

$24 \mathrm{~V} \sim$	1770520000
$42 \mathrm{~V} \sim$	1770521000
$60 \mathrm{~V} \sim$	1770522000
$127 \mathrm{~V} \sim$	1770523000
$230 \mathrm{~V} \sim$	1770524000
Special voltages	$17705250 \ldots$

AC, 50 Hz , four changeover contacts, twin contacts,
AgNi0,15 $6 \mu \mathrm{~m} \mathrm{Au}$, closed PC cover, IP 50, climatic type

$24 \mathrm{~V} \sim$	1774531000
$42 \mathrm{~V} \sim$	1774532000
$60 \mathrm{~V} \sim$	1774533000
$127 \mathrm{~V} \sim$	1774534000
$230 \mathrm{~V} \sim$	1774535000
Special voltages	$17745360 \ldots$

DC, four changeover contacts, twin contacts, AgCu , closed PC cover, IP 50, target: operating current, climatic/ship type

$24 \mathrm{~V} \sim$	1771842000
$42 \mathrm{~V} \sim$	1771843000
$60 \mathrm{~V} \sim$	1771844000
$127 \mathrm{~V}_{\sim}$	1771845000
$230 \mathrm{~V}_{\sim}$	1771846000
Special voltages	$17718470 \ldots$

$\mathrm{AC}, 50 \mathrm{~Hz}$, four changeover contacts, twin contacts, AgCu , closed PC cover, IP 50, target: closed-circuit current, climatic/ship type

$24 \mathrm{~V} \sim$	1771848000
$42 \mathrm{~V} \sim$	1771849000
$60 \mathrm{~V} \sim$	1771850000
$127 \mathrm{~V} \sim$	1771851000
$230 \mathrm{~V} \sim$	1771852000
Special voltages	1771853000

$\mathrm{AC}, 50 \mathrm{~Hz}$, four changeover contacts, twin contacts, AgCu , closed PC cover, IP 50,
climatic/ship type

$24 \mathrm{~V} \sim$	1771854000
$42 \mathrm{~V} \sim$	1771855000
$60 \mathrm{~V} \sim$	1771838000
$127 \mathrm{~V}_{\sim}$	1771839000
$230 \mathrm{~V} \sim$	1771840000
Special voltages	$17718410 \ldots$

$\mathrm{AC}, 60 \mathrm{~Hz}$, eight changeover contacts, single contacts, AgCu , closed Al cover, IP 40,
Standard type

$24 \mathrm{~V}_{\sim}$	1731444600
$42 \mathrm{~V} \sim$	1731445600
$60 \mathrm{~V}_{\sim}$	1731446600
$127 \mathrm{~V} \sim$	1731447600
$220 \mathrm{~V}_{\sim}$	1731448600
Special voltages	$17314496 \ldots$

$\mathrm{AC}, 60 \mathrm{~Hz}$, eight changeover contacts, single contacts, AgCu , closed Al cover, IP 40, climatic/ship type

$24 \mathrm{~V} \sim$	1770443600
$42 \mathrm{~V} \sim$	1770444600
$60 \mathrm{~V} \sim$	1770445600
$127 \mathrm{~V} \sim$	1770446600
$220 \mathrm{~V} \sim$	1770447600
Special voltages	$17704486 \ldots$

List of Extended Order Numbers

The $9^{\text {th }}$ and $10^{\text {th }}$ digit of the order number acc. to the "List of Order Numbers (PI.nos) must be supplemented with the requested special voltage.

Special voltage	6 V DC	9. and 10. digit of the PI. nos.	1	
	12 V AC		1	
	32 V DC		1	. 03
	36 V DC		1	. 10
	36 V AC		1	. 10
	42 V DC		1	. 04
	48 V DC		1	. 05
	48 V AC		1	. 05
	52 V DC		1	. 12
	80 V DC		1	. 07
	96 V DC		1	. 14
	100 V DC		1	. 08
	100 V AC		1	. 08
	110 V AC		1	. 11
	125 V DC		1	. 09
	250 V DC		1	13
	400 V AC		1	. 12

Other special voltages upon request.

Accessoires

Plug-in connection with quick-rail fixing, DIN labeling	1739245000
Plug-in connection with quick-rail fixing, RELOG labeling	1739245100
Plug-in connection with quick rail fixing, GP02-40 diode ($\mathrm{U}_{\text {RRM }}=4 \mathrm{kV}$), DIN labeling	1739245010
Plug-in connection with quick rail fixing, BYW 56 diode ($\mathrm{U}_{\text {RRM }}=1 \mathrm{kV}$), DIN labeling	1739245011
Plug-in connection with quick rail fixing, GP02-40 diode ($\mathrm{U}_{\text {RRM }}=40 \mathrm{kV}$), RELOG labeling	1739245110
Plug-in connection with quick rail fixing, BYW 56 diode ($\mathrm{U}_{\text {RRM }}=1 \mathrm{kV}$), RELOG labeling	1739245111
Fastening sheet "Single-screw fixing" for plug-in connection with quick-rail fixing	1739246000
RELOG Adaptor connected for 2 RH all-or-nothing relay	1739194000
RELOG Adaptor for 2 RH all-or-nothing relay . / 4 RH . without wiring	1739195000
Plug-in connection for 2 H all-or-nothing relay 14 poles, solder termination	1770335000
Plug-in connection for 2 H all-or-nothing relay 14 poles, wire-wrap termination	1770594000
plug-in connection 22 poles, solder termination	1770334000
plug-in connection 22 poles, wire-wrap termination	1770595000

Schließen Sie Kontakt mit uns! Please contact us!

Abstract

Die Experten der EAW Relaistechnik GmbH nehmen sich gern Zeit für ein informatives Gespräch mit Ihnen. Natürlich kostenlos und unverbindlich. So haben Sie Gewissheit, dass wir die richtigen Partner sind.

The specialists of EAW Relaistechnik GmbH will be glad to take time out to meet you for informative talks.
Convince yourself - without charge - that you have found the right partner in us.
eaw Relaistechnik GmbH
Dorothea-Erxleben-Straße 4
15711 Königs Wusterhausen
Deutschland

Tel +49(0)3375 2131-0
Fax +49(0)3375 2131-200
info@eaw-relaistechnik.de
www.eaw-relaistechnik.de

[^0]: *The golden layer of the $\mathrm{AgNi} 0,15 \mathrm{Au} 6$ contact tip material is subject under erosion depending on the current value. After that the contacts have the features of silver-nickel (fine silver) contact tip material.

